
Published as a conference paper at ICLR 2024

SUBTRACTIVE MIXTURE MODELS VIA SQUARING:
REPRESENTATION AND LEARNING

Lorenzo Loconte1∗ Aleksanteri M. Sladek2 Stefan Mengel3

Martin Trapp2 Arno Solin2 Nicolas Gillis4 Antonio Vergari1

1 School of Informatics, University of Edinburgh, UK
2 Department of Computer Science, Aalto University, Finland
3 University of Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), France
4 Department of Mathematics and Operational Research, Université de Mons, Belgium

ABSTRACT

Mixture models are traditionally represented and learned by adding several distri-1

butions as components. Allowing mixtures to subtract probability mass or density2

can drastically reduce the number of components needed to model complex dis-3

tributions. However, learning such subtractive mixtures while ensuring they still4

encode a non-negative function is challenging. We investigate how to learn and5

perform inference on deep subtractive mixtures by squaring them. We do this in6

the framework of probabilistic circuits, which enable us to represent tensorized7

mixtures and generalize several other subtractive models. We theoretically prove8

that the class of squared circuits allowing subtractions can be exponentially more9

expressive than traditional additive mixtures; and, we empirically show this in-10

creased expressiveness on a series of real-world distribution estimation tasks.11

1 INTRODUCTION12

Finite mixture models (MMs) are a staple in probabilistic machine learning, as they offer a simple13

and elegant solution to model complex distributions by blending simpler ones in a linear combination14

(McLachlan et al., 2019). The classical recipe to design MMs is to compute a convex combination15

over input components. That is, a MM representing a probability distribution p over a set of random16

variables X = {X1, X2, . . . , XD} is usually defined as17

p(X) =
∑K

i=1 wipi(X), with wi ≥ 0,
∑K

i=1 wi = 1, (1)

where wi are the mixture parameters and each component pi is a mass or density function. This18

is the case for widely-used MMs such as Gaussian mixture models (GMMs) and hidden Markov19

models (HMMs) but also mixtures of generative models such as normalizing flows (Papamakarios20

et al., 2021) and deep mixture models such as probabilistic circuits (PCs, Vergari et al., 2019b).21

The convexity constraint in Eq. (1) is the simplest sufficient condition22

to ensure that p is a non-negative function and integrates to 1,1 i.e.,23

is a valid probability distribution, and is often assumed in practice.24

However, this implies that the components pi can only be combined25

in an additive manner and as such it can greatly impact their ability to26

estimate a distribution efficiently. For instance, consider approximat-27

ing distributions having “holes” in their domain, such as the simple28

2-dimensional ring distribution on the left (ground truth). A classi-29

cal additive MM such a GMM would ultimately recover it, as it is a30

universal approximator of density functions (Nguyen et al., 2019), but only by employing an unnec-31

essarily high number of components. A MM allowing negative mixture weights, i.e., wi < 0, would32

instead require only two components, as it can subtract one outer Gaussian density from an inner33

∗Corresponding author, l.loconte@sms.ed.ac.uk
1Across the paper we will abuse the term integration to also refer to summation in case of discrete variables.

1

mailto:l.loconte@sms.ed.ac.uk

Published as a conference paper at ICLR 2024

one (NGMM). We call these MMs subtractive or non-monotonic MMs (NMMs), as opposed to their34

classical additive counterpart, called monotonic MMs (Shpilka & Yehudayoff, 2010).35

The challenge with NMMs is ensuring that the modeled p(X) is a valid distribution, as the convex-36

ity constraint does not hold anymore. This problem has been investigated in the past in a number37

of ways, in its simplest form by imposing ad-hoc constraints over the mixture parameters wi, de-38

rived for simple components such as Gaussian and Weibull distributions (Zhang & Zhang, 2005;39

Rabusseau & Denis, 2014; Jiang et al., 1999). However, different families of components would40

require formulating different constraints, whose closed-form existence is not guaranteed.41

In this paper, we study a more general principle to design NMMs that circumvents the aforemen-42

tioned limitation while ensuring non-negativity of the modeled function: squaring the encoded lin-43

ear combination. For example, the NGMM above is a squared combination of Gaussian densities44

with negative mixture parameters. We theoretically investigate the expressive efficiency of squared45

NMMs, i.e., their expressiveness w.r.t. their model size, and show how to effectively represent and46

learn them in practice. Specifically, we do so in the framework of PCs, tractable models general-47

izing classical shallow MMs into deep MMs represented as structured neural networks. Deep PCs48

are already more expressive efficient than shallow MMs as they compactly encode a mixture with49

an exponential number of components (Vergari et al., 2019b; Choi et al., 2020). However, they are50

classically represented with non-negative parameters, hence being restricted to encode deep but ad-51

ditive MMs. Instead, as a main theoretical contribution we prove that our squared non-monotonic52

PCs (NPC2s) can be exponentially more parameter-efficient than their monotonic counterparts.53

Contributions. i) We introduce a general framework to represent NMMs via squaring (Sec. 2),54

within the language of tensorized PCs (Mari et al., 2023), and show how NPC2s can be effectively55

learned and used for tractable inference (Sec. 3). ii) We show how NPC2s generalize not only mono-56

tonic PCs but other apparently different models allowing negative parameters that have emerged in57

different literatures, such as square root of density models in signal processing (Pinheiro & Vi-58

dakovic, 1997), positive semi-definite (PSD) models in kernel methods (Rudi & Ciliberto, 2021),59

and Born machines from quantum mechanics (Orús, 2013) (Sec. 4). This allows us to understand60

why they lead to tractable inference via the property-oriented framework of PCs. iii) We derive an61

exponential lower bound over the size of monotonic PCs to represent functions that can be com-62

pactly encoded by one NPC2 (Sec. 4.1), hence showing that NPC2s (and thus the aforementioned63

models) can be more expressive for a given size. Finally, iv) we provide empirical evidence (Sec. 5)64

that NPC2s can approximate distributions better than monotonic PCs for a variety of experimen-65

tal settings involving learning from real-world data and distilling intractable models such as large66

language models to unlock tractable inference (Zhang et al., 2023).67

2 SUBTRACTIVE MIXTURES VIA SQUARING68

We start by formalizing how to represent shallow NMMs by squaring non-convex combinations of69

K simple functions. Like exponentiation in energy-based models (LeCun et al., 2006), squaring70

ensures the non-negativity of our models, but differently from it, allows to tractably renormalize71

them. A squared NMM encodes a (possibly unnormalized) distribution c2(X) over variables X as72

c2(X) =
(∑K

i=1 wici(X)
)2

=
∑K

i=1

∑K
j=1 wiwjci(X)cj(X), (2)

where ci are the learnable components and the mixture parameters wi ∈ R are unconstrained, as73

opposed to Eq. (1). Squared NMMs can therefore represent
(
K+1
2

)
components within the same pa-74

rameter budget of K components of an additive MM. Each component of a squared NMM computes75

a product of experts ci(X)cj(X) (Hinton, 2002) allowing negative parameters 2wiwj if i ̸= j, and76

c2i (X) with w2
i otherwise. Fig. 1 shows a concrete example of this construction, which constitutes77

the simplest NPC2 we can build (see Sec. 3), i.e., comprising a single layer and having depth one.78

Tractable marginalization. Analogously to traditional MMs, squared NMMs support tractable79

marginalization and conditioning, if their component distributions do as well. The distribution en-80

coded by c2(X) can be normalized to compute a valid probability distribution p(X) = c2(X)/Z,81

by computing its partition function Z as82

Z =
∫
c2(x) dx =

∑K
i=1

∑K
j=1 wiwj

∫
ci(x)cj(x) dx. (3)

2

Published as a conference paper at ICLR 2024

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)
Figure 1: Shallow MMs and squared NMMs
represented as PCs, mapped to a computa-
tional graph having input components and a
weighted sum unit as output. Squaring a mix-
ture with K = 3 components (left) can yield
more components that share parameters (right).

Computing Z translates to evaluating
(
K+1
2

)
integrals over products of components ci(X)cj(X).83

More generally, marginalizing any subset of variables in X can be done in O(K2). This how-84

ever implies that the components ci are chosen from a family of functions such that their product85

ci(X)cj(X) can be tractably integrated, and Z is non-zero and finite. This is true for many para-86

metric families, including exponential families (Seeger, 2005). For instance, the product of two87

Gaussian or two categorical distributions is another Gaussian (Rasmussen & Williams, 2005) or88

categorical up to a multiplicative factor, which can be computed in polynomial time.89

A wider choice of components. Note that we do not require each ci to model a probability distri-90

bution, e.g., we might have ci(x) < 0. This allows us to employ more expressive tractable functions91

as base components in squared NMMs such as splines (see App. E for details) or potentially small92

neural networks (see discussion in App. G). However, if the components are already flexible enough93

there might not be an increase in expressiveness when mixing them in a linear combination or squar-94

ing them. E.g., a simple categorical distribution can already capture any discrete distribution with95

finite support and a (subtractive) mixture thereof might not yield additional benefits besides being96

easier to learn. An additive mixture of Binomials is instead more expressive than a single Binomial,97

but expected to be less expressive than its subtractive version (as illustrated in Sec. 5).98

Learning squared NMMs. The canonical way to learn traditional MMs (Eq. (1)) is by maximum-99

likelihood estimation (MLE), i.e., by maximizing
∑

x∈D log p(x) where D is a set of independent100

and identically distributed (i.i.d.) samples. For squared NMMs, the MLE objective is101

∑
x∈D log

(
c2(x)/Z

)
= −|D| logZ + 2

∑
x∈D log |c(x)|, (4)

where c(x) =
∑K

i=1 wici(x). Unlike other NMMs mentioned in Sec. 1, we do not need to derive102

additional closed-form constraints for the parameters to preserve non-negativity. Although mate-103

rializing the squared mixture having
(
K+1
2

)
components is required to compute Z as in Eq. (3),104

evaluating log |c(x)| is linear in K. Hence, we can efficiently perform batched stochastic gradient-105

based optimization and compute Z just once per batch.106

3 SQUARING DEEP MIXTURE MODELS107

So far, we dealt with mixtures that are shallow, i.e., that can be represented as simple computational108

graphs with a single weighted sum unit (e.g., Fig. 1). We now generalize them in the framework109

of PCs (Vergari et al., 2019b; Choi et al., 2020; Darwiche, 2001) as they offer a property-driven110

language to model structured neural networks which allow tractable inference. PCs enable us to111

encode an exponential number of mixture components in a compact but deep computational graph.112

PCs are usually defined in terms of scalar computational units: sum, product and input (see App. A).113

Following Vergari et al. (2019a); Mari et al. (2023), we instead formalize them as tensorized compu-114

tational graphs. That is, we group several computational units together in layers, whose advantage is115

twofold. First, we are able to derive a simplified tractable algorithm for squaring that requires only116

linear algebra operations and benefits from GPU acceleration (Alg. 1). Second, we can more easily117

generalize many recent PC architectures (Peharz et al., 2020b;a; Liu & Van den Broeck, 2021), as118

well as other tractable tensor representations (Sec. 4). Fig. A.1 illustrates how scalar computational119

units are mapped to tensorized layers. We start by defining deep computational graphs that can120

model possibly negative functions, simply named circuits (Vergari et al., 2021).121

Definition 1 (Tensorized circuit). A tensorized circuit c is a parameterized computational graph122

encoding a function c(X) and comprising of three kinds of layers: input, product and sum. Each123

layer comprises computational units defined over the same set of variables, also called its scope, and124

every non-input layer receives input from one or more layers. The scope of each non-input layer is125

3

Published as a conference paper at ICLR 2024

X3 X2

X2,X3 X1

X1,X2,X3

(a)

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙

⊙

(b)

fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙

⊙

(c)

Figure 2: Squaring tensorized structured-decomposable circuits reduces to squaring layers,
depicted as colored boxes of (input), (product), and a classic, real deep, Voltaire (sum). Connections to a sum layer
are labeled by the matrix parameterizing the layer, while connections to product layers are labeled
by the Hadamard product sign (see also Fig. A.1). A tensorized structured-decomposable circuit (b)
over three variables defined from the RG in (a) is squared in (c) by recursively squaring each layer
via Alg. 1. Squared layers contain a quadratic number of units, but still output vectors.

the union of the scope of its inputs, and the scope of the output layer computing c(X) is X. Each126

input layer ℓ has scope Y ⊆ X and computes a collection of K functions fi(Y) ∈ R, i.e., ℓ outputs127

a K-dimensional vector. Each product layer ℓ computes an Hadamard (or element-wise) product128

over the N layers it receives as input, i.e., ℓ = ⊙N
i=1ℓi. A sum layer with S sum units and receiving129

input from a previous layer ℓ ∈ RK , is parameterized by W ∈ RS×K and computes Wℓ.130

Fig. 2b shows a deep circuit in tensorized form. To model a distribution via circuits we first require131

that the output of the computational graph is non-negative. We call such a circuit a PC. Similarly132

to shallow additive MM (Eq. (1)), a sufficient condition to ensure non-negativity of the output is133

make the PC monotonic, i.e., to parameterize all sum layers with non-negative matrices and to134

restrict input layers to encode non-negative functions (e.g., probability mass or density functions).135

So far, monotonic PCs have been the canonical way to represent and learn PCs (App. G). In Def. 1136

we presented product layers computing Hadamard products only, to simplify notation and as this137

implementation choice is commonly used in many existing PC architectures (Darwiche, 2009; Liu138

& Van den Broeck, 2021; Mari et al., 2023). We generalize our treatment of PCs in Def. A.6 to deal139

with another popular product layer implementation: Kronecker products (Peharz et al., 2020b;a;140

Mari et al., 2023). Our results still hold for both kinds of product layers, if not specified otherwise.141

3.1 BUILDING TRACTABLE CIRCUITS FOR MARGINALIZATION142

Deep PCs can be renormalized and marginalize out any subset of X in a single feed-forward pass143

if they are smooth and decomposable, i.e., each sum layer receives inputs from layers whose units144

are defined over the same scopes, and each product layer receives inputs from layers whose scopes145

are pairwise disjoint, respectively. See Prop. A.1 for more background. Sum layers in our Def. 1146

guarantee smoothness by design as they have exactly one input. A simple way to ensure decompos-147

ability is to create a circuit that follows a hierarchical scope partitioning of variables X, also called148

a region graph, which is formalized next.149

Definition 2 (Region graph (Dennis & Ventura, 2012)). Given a set of variables X, a region graph150

(RG) is a bipartite and rooted graph whose nodes are either regions, denoting subsets R of X, or151

partitions specifying how a region is partitioned into other regions.152

Fig. 2a shows an example of a RG. Given a RG, we can build a smooth and decomposable tensorized153

circuit as follows. First, we parameterize regions R ⊆ X that are not further partitioned with an154

input layer encoding some functions over variables in R. Then, we parameterize each partitioning155

{Ri}Ni=1 with a product layer having as inputs one layer for each Ri. Each product layer is then156

followed by a sum layer. Figs. 2a and 2b illustrate such a construction by color-coding regions and157

corresponding layers. As we will show in Sec. 3.2, this also provides us a clean recipe to efficiently158

square a deep circuit. The literature on PCs provides several ways to build RGs (Peharz et al.,159

2020b;a; Mari et al., 2023). In our experiments (Sec. 5), we recursively partition sets of variables160

randomly until no further partitioning is possible (Peharz et al., 2020b). Moreover, we experiment161

with RGs that partitions variables one by one (e.g., the one in Fig. 2a), as they are related to other162

classes of models (see Sec. 4). App. F details how to construct RGs.163

4

Published as a conference paper at ICLR 2024

3.2 SQUARING DEEP TENSORIZED CIRCUITS164

(Squared negative) MMs as circuits. It is easy to see that traditional shallow MMs (Eq. (1)) can165

be readily represented as tensorized smooth and decomposable PCs consisting of an input layer166

encoding K components pi followed by a sum layer, which is parameterized by a non-negative row-167

vector W ∈ R1×K
+ whose entries sum up to one. Squared NMMs (Eq. (2)) can be represented in a168

similar way, as they can be viewed as mixtures over an increased number of components (see Fig. 1169

and Fig. A.1), where the sum layer is parameterized by real entries, instead. Next, we discuss how170

to square deep tensorized circuits as to retrieve our NPC2s model class.171

Squaring (and renormalizing) tensorized circuits. The challenge of squaring a tensorized non-172

monotonic circuit c (potentially encoding a negative function) is guaranteeing c2 to be representable173

as a smooth and decomposable PC with polynomial size, as these two properties are necessary174

conditions to being able to renormalize c2 efficiently and in a single feed-forward pass (Choi et al.,175

2020). In general, even squaring a decomposable circuit while preserving decomposability of the176

squared circuit is a #P-hard problem (Shen et al., 2016; Vergari et al., 2021). Fortunately, it is177

possible to obtain a decomposable representation of c2 efficiently for circuits c that are structured-178

decomposable (Pipatsrisawat & Darwiche, 2008; Vergari et al., 2021). Intuitively, in a tensorized179

structured-decomposable circuit all product layers having the same scope Y ⊆ X decompose Y180

over their input layers in the exact same way. We formalize this property in the Appendix in Def. A.3.181

Tensorized circuits satisfying this property by design can be easily constructed by stacking layers182

conforming to a RG, as discussed before, and requiring that such a RG is a tree, i.e., in which there is183

a single way to partition each region, and whose input regions do not have overlapping scopes. E.g.,184

the RG in Fig. 2a is a tree RG. From here on, w.l.o.g. we assume our tree RGs to be binary trees, i.e.,185

they partition each region into two other regions only. Given a tensorized structured-decomposable186

circuit c defined on such a tree RG, Alg. 1 efficiently constructs a smooth and decomposable ten-187

sorized circuit c2. Moreover, let L be the number of layers and M the maximum time required to188

evaluate one layer in c, then the following proposition holds.189

Proposition 1 (Tractable marginalization of squared circuits). Let c be a tensorized structured-190

decomposable circuit where the products of functions computed by each input layer can be tractably191

integrated. Any marginalization of c2 obtained via Alg. 1 requires time and space O(L ·M2).192

See App. B.2 for a proof. In a nutshell, this is possible because Alg. 1 recursively squares each193

layer ℓ in c such as ℓ2 = ℓ⊗ ℓ in c2, where ⊗ denotes the Kronecker product of two vectors.2 Our194

tensorized treatment of circuits allows for a much more compact version of the more general algo-195

rithm proposed in Vergari et al. (2021) which was defined in terms of squaring scalar computational196

units. At the same time, it lets us derive a tighter worst-case upper-bound than the one usually re-197

ported for squaring structured-decomposable circuits (Pipatsrisawat & Darwiche, 2008; Choi et al.,198

2015; Vergari et al., 2021), which is the squared number of computations in the whole computational199

graph, or O(L2 · M2). Note that materializing c2 is needed when we want to efficiently compute200

the normalization constant Z of c2 or marginalizing any subset of variables. As such, when learning201

by MLE (Eq. (4)) and by batched gradient descent, we need to evaluate c2 only once per batch, thus202

greatly amortizing its cost. In App. C, we investigate the time and memory costs of learning NPC2s203

having different size and on different data set dimensionalities. Finally, tractable marginalization204

enables tractable sampling from the distribution modeled by NPC2s, as we discuss in App. A.2.205

3.3 NUMERICALLY STABLE INFERENCE AND LEARNING206

Renormalizing deep PCs can easily lead to underflows and/or overflows. In monotonic PCs, this207

is usually addressed by performing computations in log-space and utilizing the log-sum-exp trick208

(Blanchard et al., 2021). However, this is not applicable to non-monotonic PCs as intermediate209

layers can compute negative values. Therefore, we instead evaluate circuits by propagating the log-210

arithm of absolute values and the sign values of the outputs of each layer. Then, sum layers are211

evaluated with a sign-aware version of the log-sum-exp trick. A similar idea has been already ap-212

plied to evaluate expectations of negative functions with monotonic PCs (Mauá et al., 2018; Correia213

& de Campos, 2019). App. D extends it to tensorized non-monotonic circuits.214

2In Alg. B.2 we provide a generalization of Alg. 1 to square Kronecker product layers.

5

Published as a conference paper at ICLR 2024

Algorithm 1 squareTensorizedCircuit(ℓ,R)

Input: A tensorized circuit having output layer ℓ and defined on a tree RG rooted byR.
Output: The tensorized squared circuit defined on the same tree RG having ℓ2 as output layer computing ℓ⊗ℓ.
1: if ℓ is an input layer then
2: ℓ computes K functions fi(R)
3: return An input layer ℓ2 computing all K2

4: product combinations fi(R)fj(R)
5: else if ℓ is a product layer then
6: {(ℓi,Ri), (ℓii,Rii)} ← getInputs(ℓ,R)
7: ℓ2i ← squareTensorizedCircuit(ℓi,Ri)
8: ℓ2ii ← squareTensorizedCircuit(ℓii,Rii)

9: return ℓ2i ⊙ ℓ2ii
10: else ▷ ℓ is a sum layer
11: {(ℓi,R)} ← getInputs(ℓ,R)
12: ℓ2i ← squareTensorizedCircuit(ℓi,R)
13: W ∈ RS×K ← getParameters(ℓ)
14: W′ ∈ RS2×K2

←W ⊗W
15: return W′ℓ2i

4 EXPRESSIVENESS OF NPC2S AND RELATIONSHIP TO OTHER MODELS215

Circuits have been used as the “lingua franca” to represent apparently different tractable model216

representations (Darwiche & Marquis, 2002; Shpilka & Yehudayoff, 2010), and to investigate their217

ability to exactly represent certain function families with only a polynomial increase in model size218

– also called the expressive efficiency (Martens & Medabalimi, 2014), or succinctness (de Colnet219

& Mengel, 2021) of a model class. This is because the size of circuits directly translates to the220

computational complexity of performing inference. As we extend the language of monotonic PCs221

to include negative parameters, here we provide polytime reductions from tractable probabilistic222

model classes emerging from different application fields that can encode subtractions, to (deep)223

non-monotonic PCs. By doing so, we not only shed light on why they are tractable, by explicitly224

stating their structural properties as circuits, but also on why they can be more expressive than225

classical additive MMs, as we prove that NPC2s can be exponentially more compact in Sec. 4.1.226

Simple shallow NMMs have been investigated for a limited set of component families, as discussed227

in Sec. 1. Notably, this can also be done by directly learning to approximate the square root of a228

density function, as done in signal processing with wavelet functions as components (Daubechies,229

1992; Pinheiro & Vidakovic, 1997) or RBF kernels, i.e., unnormalized Gaussians centered over data230

points (Schölkopf & Smola, 2001), as in Hong & Gao (2021). As discussed in Sec. 3, we can readily231

represent these NMMs as simple NPC2s where kernel functions are computed by input layers.232

Positive semi-definite (PSD) models (Rudi & Ciliberto, 2021; Marteau-Ferey et al., 2020) are233

a recent class of models from the kernel and optimization literature. Given a kernel function κ234

(e.g., an RBF kernel as in Rudi & Ciliberto (2021)) and a set of d data points x(1), . . . ,x(d) with235

κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))]⊤ ∈ Rd, and a real d × d PSD matrix A, they define an unnor-236

malized distribution as the non-negative function f(x;A,κ) = κ(x)⊤Aκ(x). Although apparently237

different, they can be translated to NPC2s in polynomial time.238

Proposition 2 (Reduction from PSD models). A PSD model with kernel function κ, defined over239

d data points, and parameterized by a PSD matrix A, can be represented as a mixture of squared240

NMMs (hence NPC2s) in time O(d3).241

We prove this in App. B.3. Note that while PSD models are shallow non-monotonic PCs, we can242

stack them into deeper NPC2s that support tractable marginalization via structured-decomposability.243

Tensor networks and the Born rule. Squaring a possibly negative function to retrieve an un-244

normalized distribution is related to the Born rule in quantum mechanics (Dirac, 1930), used to245

characterize the distribution of particles by squaring their wave function (Schollwoeck, 2010; Orús,246

2013). These functions can be represented as a large D-dimensional tensor T over discrete vari-247

ables X = {X1, . . . , XD} taking value {1, . . . ,m}, compactly factorized in a tensor network (TN)248

such as a matrix-product state (MPS) (Pérez-Garcı́a et al., 2007), also called tensor-train. Given an249

assignment x = ⟨x1, . . . , xD⟩ to X, a rank r MPS compactly represents T as250

T [x1, . . . , xD] =
∑r

i1=1

∑r

i2=1
· · ·
∑r

iD−1=1
A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1], (5)

where A1,AD ∈ Rm×r, Aj ∈ Rm×r×r with 1 < j < D, for indices {i1, . . . , iD−1}, and de-251

noting indexing with square brackets. To encode a distribution p(X), one can reparameterize ten-252

sors Aj to be non-negative (Novikov et al., 2021) or apply the Born rule and square T to model253

6

Published as a conference paper at ICLR 2024

p(x) ∝ (T [x1, . . . , xD])2. Such a TN is called a Born machine (BM) (Glasser et al., 2019). Be-254

sides modeling complex quantum states, TNs such as BMs have also been explored as classical255

ML models to learn discrete distributions (Stoudenmire & Schwab, 2016; Han et al., 2018; Glasser256

et al., 2019; Cheng et al., 2019), in quantum ML (Liu & Wang, 2018; Huggins et al., 2018), and257

more recently extended to continuous domains by introducing sets of basis functions, called TTDE258

(Novikov et al., 2021). Next, we show they are a special case of NPC2s.259

Proposition 3 (Reduction from BMs). A BM encoding D-dimensional tensor with m states by260

squaring a rank r MPS can be exactly represented as a structured-decomposable NPC2 in O(D ·k4)261

time and space, with k ≤ min{r2,mr}.262

We prove this in App. B.4 by showing an equivalent NPC2 defined on linear tree RG (e.g., the one263

in Fig. 2a). This connection highlights how tractable marginalization in BMs is possible thanks to264

structured-decomposability (Proposition 1), a condition that to the best of our knowledge was not265

previously studied for TNs. Futhermore, as NPC2s we can now design more flexible tree RGs, e.g.,266

randomized tree structures (Peharz et al., 2020b; Di Mauro et al., 2017; Di Mauro et al., 2021),267

densely tensorized structures heavily exploiting GPU parallelization (Peharz et al., 2020a; Mari268

et al., 2023) or heuristically learn them from data (Liu & Van den Broeck, 2021).269

4.1 EXPONENTIAL SEPARATION OF NPC2S AND STRUCTURED MONOTONIC PCS270

Squaring via Alg. 1 can already make a tensorized (monotonic) PC more expressive, but only by a271

polynomial factor, as we quadratically increase the size of each layer, while keeping the same num-272

ber of learnable parameters (similarly to the increased number of components of squared NMMs273

(Sec. 2)). On the other hand, allowing negative parameters can provide an exponential advantage,274

as proven for certain circuits (Valiant, 1979), but understanding if this advantage carries over to275

our squared circuits is not immediate. In fact, we observe there cannot be any expressiveness ad-276

vantage in squaring certain classes of non-monotonic structured-decomposable circuits. These are277

the circuits that support tractable maximum-a-posteriori inference (Choi et al., 2020) and satisfy an278

additional property known as determinism (see Darwiche (2001), Def. A.5). Squaring these circuits279

outputs a PC of the same size and that is monotonic, as formalized next and proven in App. B.6.280

Proposition 4 (Squaring deterministic circuits). Let c be a smooth, decomposable and deterministic281

circuit, possibly computing a negative function. Then, the squared circuit c2 is monotonic and has282

the same structure (and hence size) of c.283

The NPC2s we considered so far, as constructed in Sec. 3, are not deterministic. Here we prove that284

some non-negative functions (hence probability distributions up to renormalization) can be com-285

puted by NPC2s that are exponentially smaller than any structured-decomposable monotonic PC.286

Theorem 1 (Expressive efficiency of NPC2s). There is a class of non-negative functions F over287

variables X that can be compactly represented as a shallow squared NMM (hence NPC2s), but for288

which the smallest structured-decomposable monotonic PC computing any F ∈ F has size 2Ω(|X|).289

We prove this in App. B.5 by showing a non-trivial lower bound on the size of structured-290

decomposable monotonic PCs for a variant of the unique disjointness problem (Fiorini et al., 2015).291

Intuitively, this tells us that, given a fixed number of parameters, NPC2s can potentially be much292

more expressive than structured-decomposable monotonic PCs (and hence shallow additive MMs).293

We conjecture that an analogous lower bound can be devised for decomposable monotonic PCs.294

Furthermore, as this result directly extends to PSD and BM models (Sec. 4), it opens up interesting295

theoretical connections in the research fields of kernel-based and TN models.296

5 EXPERIMENTS297

We aim to answer the following questions: (A) are NPC2s better distribution estimators than mono-298

tonic PCs? (B) how the increased model size given by squaring and the presence of negative pa-299

rameters independently influence the expressiveness of NPC2s? (C) how does the choice of input300

layers and the RG affect the performance of NPC2s? We perform several distribution estimation301

experiments on both synthetic and real-world data, and label the following paragraphs with letters302

denoting relevance to the above questions. Moreover, note that our comparisons between NPC2s303

and monotonic PCs are based on models having the same number of learnable parameters.304

7

Published as a conference paper at ICLR 2024

C
O

N
T

IN
U

O
U

S

S
P

L
IN

E
S

D
IS

C
R

E
T

E

GT
C

A
T

E
G

O
R

IC
A

L
MPC MPC2 NPC2

GT

B
IN

O
M

IA
L

MPC MPC2 NPC2

Figure 3: NPC2s are better estimators, especially with parameter-efficient input layers. Dis-
tribution estimated by monotonic PCs (MPC), squared monotonic PCs (MPC2) and NPC2s on 2D
continuous (above) and discrete (below) data. On continuous data input layers compute splines
(Eq. (11)), while on discrete data they compute either categoricals (for MPC and MPC2), embed-
dings (for NPC2s) or Binomials. Apps. H.1 and H.2 shows log-likelihoods on also additional data.

0.
25

0.
5

+

±2

Power

0.
0

10
.0

+

±2

Gas

-2
5.

0
-2

2.
5

-2
0.

0

+

±2

Hepmass

-4
0.

0
-3

0.
0

+

±2

MiniBooNE

11
0.

0
12

0.
0

+

±2

BSDS300 KG S

1024
512
256
128
64
32

Power Gas Hepmass M.BooNE BSDS300

MADE -3.08 3.56 -20.98 -15.59 148.85
RealNVP 0.17 8.33 -18.71 -13.84 153.28
MAF 0.24 10.08 -17.73 -12.24 154.93
NSF 0.66 13.09 -14.01 -9.22 157.31

Gaussian -7.74 -3.58 -27.93 -37.24 96.67
EiNet-LRS 0.36 4.79 -22.46 -34.21 —
TTDE 0.46 8.93 -21.34 -28.77 143.30
MPC (LT) 0.51 6.73 -22.06 -32.47 116.90
NPC2 (LT) 0.53 9.00 -20.66 -26.68 118.58
MPC (BT) 0.57 5.56 -22.45 -32.11 123.30
NPC2 (BT) 0.62 10.98 -20.41 -26.92 128.38

Figure 4: NPC2s can be more expressive than monotonic PCs (MPCs). Best average log-
likelihoods achieved by monotonic PCs (+) and NPC2s (±2), built either from randomized lin-
ear tree (LT) or binary tree (BT) RGs (see App. H.3). The scatter plots (left) pairs log-likelihoods
based on the number of units per layer K (the higher the darker), differentiating PCs with Gaussian
(G:blue) and splines (S:red) input layers. Both axes of each scatter plot are on the same scale, thus
the results above the diagonal are of NPC2s achieving higher log-likelihoods than MPCs at parity
of model size. The table (right) shows our models’ best average test log-likelihoods and puts them
in context with intractable (above) and tractable (below) models.

(A, B) Synthetic continuous data. Following Wenliang et al. (2019), we evaluate monotonic PCs305

and NPC2s on 2D density estimation tasks, as this allows us to gain an insight on the learned306

density functions. To disentangle the effect of squaring versus that of negative parameters, we also307

experiment with squared monotonic PCs. We build circuit structures from a trivial tree RG (see308

App. H.1 for details). We experiment with splines as input layers for NPC2s, and enforce their non-309

negativity for monotonic PCs (see App. E). Fig. 3 shows that, while squaring benefits monotonic310

PCs, negative parameters in NPC2s are needed to better capture complex target densities.311

(C) Synthetic discrete data. We estimate the probability mass of the previous 2D data sets, now312

finitely-discretized (see App. H.2), to better understand when negative parameters might bring little313

to no advantage if input layers are already expressive enough. First, we experiment with (squared)314

monotonic PCs (resp. NPC2s) having input layers computing categoricals (resp. real-valued em-315

beddings). Second, we employ the less flexible but more parameter-efficient Binomials instead.316

App. H.2 reports the hyperparameters. Fig. 3 shows that, while there is no clear advantage for317

NPC2s equipped with embeddings instead of MPC2 with categoricals, in case of Binomials they318

can better capture the target distribution. This is because categoricals (and embeddings) already319

have enough parameters to capture “holes” in the probability mass function. However, Binomials320

introduce a strong inductive bias that might hinder learning. We believe this is the reason why, ac-321

cording to some preliminary results, we did not observe an improvement of NPC2s with respect to322

monotonic PCs on estimating image distributions.323

8

Published as a conference paper at ICLR 2024

102 103

−80

−75

−70

−65

K =

LL Training data

+

±2

102 103

−90

−85

−80

−75
LL Test data Figure 5: NPC2s (±2) achieve higher log-

likelihoods than monotonic PCs (+) on data
sampled by GPT2, We report the median and
the area including 80% of runs by varying the
size of layers K and other hyperparameters
(App. H.4). For comparison, the log-likelihood
of GPT2 on the same training data is about −52.
Overfitting is observed for NPC2s, as it achieves
much higher log-likelihood on the training data.

(A, B, C) Multi-variate continuous data. Following Papamakarios et al. (2017), we evaluate324

deeper PCs for density estimation on five multivariate data sets (statistics are reported in Table H.1).325

We evaluate monotonic PCs and NPC2s in tensorized form built out of randomized linear tree RGs.326

That is, for some variable permutation, we construct a tree RG where each partition splits a region327

into a set of only one variable and recursively factorizes the rest. By doing so, we recover architec-328

tures similar to a BMs or TTDEs (see Sec. 4). Following Peharz et al. (2020b), we also experiment329

with randomized binary tree RGs whose partitions randomly split regions in half. App. H.3 details330

these RGs, as well as the hyperparameters used. We compare against: a full covariance Gaussian,331

normalizing flows RealNVP (Dinh et al., 2017), MADE (Germain et al., 2015), MAF (Papamakar-332

ios et al., 2017) and NSF (Durkan et al., 2019), a monotonic PC with input layers encoding flows333

(EiNet-LRS) (Sidheekh et al., 2023), and TTDE (Novikov et al., 2021). Fig. 4 shows that NPC2s334

with Gaussian input layers generally achieve higher log-likelihoods than monotonic PCs on four335

data sets. Fig. H.3 shows similar results when comparing to squared monotonic PCs, thus providing336

evidence that negative parameters other than squaring contribute to the expressiveness of NPC2s.337

Binary tree RGs generally deliver better likelihoods than linear tree ones, especially on Gas, where338

NPC2s using them outperform TTDE, which uses a sophisticated Riemaniann optimization scheme.339

(A) Distilling intractable models. Monotonic PCs have been used to approximate intractable mod-340

els such as LLMs and perform exact inference in presence of logical constraints, such as for con-341

strained text generation (Zhang et al., 2023). As generation performance is correlated with how342

well the LLM is approximated by a tractable model, we are interested in how NPC2s can better be343

the distillation target of a LLM such as GPT2, rather than monotonic PCs. Following Zhang et al.344

(2023), we minimize the KL divergence between GPT2 and our PCs on a data set of sentences hav-345

ing bounded length (see App. H.4 for details). Since sentences are sequences of token variables, the346

architecture of tensorized circuits is built from a linear tree RG, thus corresponding to an inhomoge-347

neous HMM in case of monotonic PCs (see App. B.4.1) while resembling a BM for NPC2s. Fig. 5348

shows that NPC2s can scale and distill GPT2 more compactly than monotonic PCs, as they achieve349

log-likelihoods closer to the ones computed by GPT2. Moreover, we observe that NPC2s overfit the350

training data, which is however further evidence of the increased expressiveness of NPC2s. In the351

limit and by sampling enough sentences from GPT2, one can definitely reduce the risk of overfitting352

in the mentioned experimental setting. While regularization methods have been proposed for MPCs353

(Peharz et al., 2020b), regularizing NPC2s deserves future investigation.354

6 DISCUSSION & CONCLUSION355

With this work, we hope to popularize subtractive MMs via squaring as a simple and effective model356

class in the toolkit of tractable probabilistic modeling and reasoning that can rival traditional additive357

MMs. By casting them in the framework of circuits, we presented how to effectively represent358

and learn deep subtractive MMs such as NPC2s (Sec. 3) while showing how they can generalize359

other model classes such as PSD and tensor network models (Sec. 4). Our main theoretical result360

(Sec. 4.1) applies also to these models and justifies the increased performance we found in practice361

(Sec. 5). This work is the first to rigorously address representing and learning non-monotonic PCs362

in a general way, and opens up a number of future research directions. The first one is to retrieve a363

latent variable interpretation for NPC2s, as negative parameters in a non-monotonic PC invalidate364

the probabilistic interpretation of its sub-circuits (Peharz et al., 2017), making it not possible to learn365

its structure and parameters in classical ways (see App. G). Better ways to learn NPC2s, in turn, can366

benefit all applications in which PCs are widely used – from causal discovery (Wang et al., 2022)367

9

Published as a conference paper at ICLR 2024

to variational inference (Shih & Ermon, 2020) and neuro-symbolic AI (Ahmed et al., 2022) – by368

making more compact and expressive distributions accessible. Finally, by connecting circuits with369

tensor networks for the first time, we hope to inspire works that carry over the advancements of one370

community to the other, such as better learning schemes (Stoudenmire & Schwab, 2016; Novikov371

et al., 2021), and more flexible ways to factorize high-dimensional tensors (Mari et al., 2023).372

REPRODUCIBILITY STATEMENT373

In App. H we include all the details about the experiments we showed in Sec. 5. The source code,374

documentation, data sets and scripts needed to reproduce the results and figures, are available at375

https://github.com/april-tools/squared-npcs.376

ACKNOWLEDGMENTS377

AV was supported by the ”UNREAL: Unified Reasoning Layer for Trustworthy ML” project378

(EP/Y023838/1) selected by the ERC and funded by UKRI EPSRC. NG acknowledges the support379

by the European Union (ERC consolidator, eLinoR, no 101085607). AMS acknowledges funding380

from the Helsinki Institute for Information Technology. MT acknowledges funding from the Re-381

search Council of Finland (grant number 347279). The authors acknowledge the computational382

resources provided by the CSC – IT Center for Science, Finland.383

REFERENCES384

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Seman-385

tic probabilistic layers for neuro-symbolic learning. In Advances in Neural Information Process-386

ing Systems 35 (NeurIPS), volume 35, pp. 29944–29959. Curran Associates, Inc., 2022.387

Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, and Daniel Whiteson. Parameterized388

neural networks for high-energy physics. European Physical Journal C, 76(5):235, 2016. doi:389

10.1140/epjc/s10052-016-4099-4.390

Pierre Blanchard, Desmond J. Higham, and Nicholas J. Higham. Accurately computing the log-sum-391

exp and softmax functions. Institute of Mathematics and its Applications Journal of Numerical392

Analysis (IMAJNA), 41(4):2311–2330, 2021.393

Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative modeling.394

Physical Review B, 99(15):155131, 2019.395

Arthur Choi, Guy Van den Broeck, Adnan Darwiche, Qiang Yang, and Michael Wooldridge.396

Tractable learning for structured probability spaces: A case study in learning preference distribu-397

tions. In 24th International Joint Conference on Artificial Intelligence (IJCAI), volume 2015, pp.398

2861–2868. IJCAI, 2015.399

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying frame-400

work for tractable probabilistic modeling. Technical report, University of California, Los Angeles401

(UCLA), 2020.402

Alvaro H. C. Correia and Cassio P. de Campos. Towards scalable and robust sum-product networks.403

In Scalable Uncertainty Management, 2019.404

Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: A fast and accurate learner of405

structured-decomposable probabilistic circuits. The International Journal of Approximate Rea-406

soning (IJAR), 140:92–115, 2021.407

Adnan Darwiche. Decomposable negation normal form. Journal of the ACM (JACM), 48:608–647,408

2001.409

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,410

2009.411

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelli-412

gence Research (JAIR), 17:229–264, 2002.413

10

https://github.com/april-tools/squared-npcs

Published as a conference paper at ICLR 2024

Ingrid Daubechies. Ten lectures on wavelets. Computers in Physics, 6:697–697, 1992.414

Carl de Boor. Subroutine package for calculating with B-splines. Technical report, Los Alamos415

National Lab. (LANL), 1971.416

Alexis de Colnet and Stefan Mengel. A compilation of succinctness results for arithmetic circuits. In417

18th International Conference on Principles of Knowledge Representation and Reasoning (KR),418

pp. 205–215, 2021.419

Ronald De Wolf. Nondeterministic quantum query and communication complexities. SIAM Journal420

on Computing, 32(3):681–699, 2003.421

Aaron W. Dennis. Algorithms for Learning the Structure of Monotone and Nonmonotone Sum-422

Product Networks. PhD thesis, Brigham Young University, 2016.423

Aaron W. Dennis and Dan Ventura. Learning the architecture of sum-product networks using clus-424

tering on variables. In Advances in Neural Information Processing Systems 25 (NeurIPS), pp.425

2033–2041. Curran Associates, Inc., 2012.426

Nicola Di Mauro, Antonio Vergari, Teresa M. A. Basile, and Floriana Esposito. Fast and accu-427

rate density estimation with extremely randomized cutset networks. In Machine Learning and428

Knowledge Discovery in Databases: ECML PKDD, pp. 203–219. Springer, 2017.429

Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa Maria Altomare Basile. Random430

probabilistic circuits. In 37th Conference on Uncertainty in Artificial Intelligence (UAI), volume431

161, pp. 1682–1691. PMLR, 2021.432

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In433

5th International Conference on Learning Representations (ICLR), 2017.434

Paul Adrien Maurice Dirac. The Principles of Quantum Mechanics. Clarendon Press, Oxford,, 1930.435

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.436

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In437

Advances in Neural Information Processing Systems 32 (NeurIPS), pp. 7511–7522. Curran Asso-438

ciates, Inc., 2019.439

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald De Wolf. Exponen-440

tial lower bounds for polytopes in combinatorial optimization. Journal of the ACM (JACM), 62441

(2):1–23, 2015.442

Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. Reservoir computing compen-443

sates slow response of chemosensor arrays exposed to fast varying gas concentrations in continu-444

ous monitoring. Sensors and Actuators B: Chemical, 215:618–629, 2015.445

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoencoder446

for distribution estimation. In 32nd International Conference on Machine Learning (ICML), pp.447

881 – 889, 2015.448

Nicolas Gillis. Nonnegative Matrix Factorization. Society for Industrial and Applied Mathematics449

(SIAM), 2020.450

Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Expressive power of451

tensor-network factorizations for probabilistic modeling. In Advances in Neural Information Pro-452

cessing Systems 32 (NeurIPS), pp. 1498–1510. Curran Associates, Inc., 2019.453

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative modeling454

using matrix product states. Physical Review X, 8:031012, Jul 2018.455

Georges Hebrail and Alice Berard. Individual household electric power consumption. UCI Machine456

Learning Repository, 2012.457

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural458

Computation, 14:1771–1800, 2002.459

11

Published as a conference paper at ICLR 2024

Xia Hong and Junbin Gao. Estimating the square root of probability density function on Riemannian460

manifold. Expert Systems - The Journal of Knowledge Engineering, 38(7), 2021.461

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin462

of the American Mathematical Society, 43(4):439–561, 2006.463

William J. Huggins, Piyush S. Patil, Bradley K. Mitchell, K. Birgitta Whaley, and Edwin Miles464

Stoudenmire. Towards quantum machine learning with tensor networks. Quantum Science and465

Technology, 4, 2018.466

Renyan Jiang, Ming J. Zuo, and Han-Xiong Li. Weibull and inverse weibull mixture models allowing467

negative weights. Reliability Engineering & System Safety, 66(3):227–234, 1999.468

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-469

tional Conference on Learning Representations (ICLR), 2015.470

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. Society of Industrial471

and Applied Mathematics (SIAM) Review, 51(3):455–500, 2009.472

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fujie Huang. A tutorial on473

energy-based learning. Predicting Structured Data, 2006.474

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In Advances in475

Neural Information Processing Systems 34 (NeurIPS), pp. 3558–3570. Curran Associates, Inc.,476

2021.477

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent478

variable distillation. In 11th International Conference on Learning Representations (ICLR), 2023.479

Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born machines. Physical480

Review A, 98(6):062324, 2018.481

Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to turn your knowl-482

edge graph embeddings into generative models via probabilistic circuits. In Advances in Neural483

Information Processing Systems 37 (NeurIPS). Curran Associates, Inc., 2023.484

Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and understanding overparameter-485

ized circuit representations via low-rank tensor decompositions. In 6th Workshop on Tractable486

Probabilistic Modeling, 2023.487

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative488

functions. In Advances in Neural Information Processing Systems 33 (NeurIPS), pp. 12816–489

12826, 2020.490

James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum product networks.491

arXiv preprint arXiv:1411.7717, 2014.492

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented493

natural images and its application to evaluating segmentation algorithms and measuring ecological494

statistics. In 8th International Conference on Computer Vision (ICCV), volume 2, pp. 416–423.495

IEEE, 2001.496

D. Mauá, Diarmaid Conaty, Fabio Gagliardi Cozman, Katja Poppenhaeger, and Cassio Polpo497

de Campos. Robustifying sum-product networks. International Journal of Approximate Rea-498

soning, 101:163–180, 2018.499

Geoffrey J. McLachlan, Sharon X. Lee, and Suren I. Rathnayake. Finite mixture models. Annual500

Review of Statistics and its Application, 6:355–378, 2019.501

TrungTin Nguyen, Hien Duy Nguyen, Faicel Chamroukhi, and Geoffrey J. McLachlan. Approxima-502

tion by finite mixtures of continuous density functions that vanish at infinity. Cogent Mathematics503

& Statistics, 7, 2019.504

12

Published as a conference paper at ICLR 2024

Georgii S. Novikov, Maxim E. Panov, and Ivan V. Oseledets. Tensor-train density estimation. In505

37th Conference on Uncertainty in Artificial Intelligence (UAI), volume 161 of Proceedings of506

Machine Learning Research, pp. 1321–1331. PMLR, 2021.507

Román Orús. A practical introduction to tensor networks: Matrix product states and projected508

entangled pair states. Annals of Physics, 349:117–158, 2013.509

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density510

estimation. In Advances in Neural Information Processing Systems 30 (NeurIPS), pp. 2338–2347.511

Curran Associates, Inc., 2017.512

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-513

shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of514

Machine Learning Research (JMLR), 22(1):2617–2680, 2021.515

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M. Domingos. On the latent variable516

interpretation in sum-product networks. IEEE Transactions on Pattern Analalysis and Machine517

Intelligence, 39(10):2030–2044, 2017.518

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy519

Van Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable520

learning of tractable probabilistic circuits. In 37th International Conference on Machine Learning521

(ICML), volume 119 of Proceedings of Machine Learning Research, pp. 7563–7574. PMLR,522

2020a.523

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,524

Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and ef-525

fective approach to probabilistic deep learning. In 35th Conference on Uncertainty in Artificial526

Intelligence (UAI), volume 115 of Proceedings of Machine Learning Research, pp. 334–344.527

PMLR, 2020b.528

David Pérez-Garcı́a, F. Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Matrix product state529

representations. Quantum Information and Computing, 7(5):401–430, 2007. ISSN 1533-7146.530

Les A. Piegl and Wayne Tiller. The NURBS book. In Monographs in Visual Communication, 1995.531

Aluisio Pinheiro and Brani Vidakovic. Estimating the square root of a density via compactly sup-532

ported wavelets. Computational Statistics and Data Analysis, 25(4):399–415, 1997.533

Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decom-534

posability. In 23rd Conference on Artificial Intelligence (AAAI), volume 8, pp. 517–522, 2008.535

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In IEEE536

International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE,537

2011.538

Guillaume Rabusseau and François Denis. Learning negative mixture models by tensor decomposi-539

tions. arXiv preprint arXiv:1403.4224, 2014.540

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.541

Adaptive Computation and Machine Learning. MIT Press, 2005.542

Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision543

trees as an alternative to artificial neural networks for particle identification. Nuclear Instruments544

& Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated545

Equipment, 543:577–584, 2004.546

Tim Roughgarden. Communication complexity (for algorithm designers). Foundations and Trends®547

in Theoretical Computer Science, 11(3–4):217–404, 2016.548

Alessandro Rudi and Carlo Ciliberto. PSD representations for effective probability models. In549

Advances in Neural Information Processing Systems 34 (NeurIPS), pp. 19411–19422. Curran550

Associates, Inc., 2021.551

13

Published as a conference paper at ICLR 2024

Bernhard Schölkopf and Alex Smola. Learning with kernels: support vector machines, regulariza-552

tion, optimization, and beyond. In Adaptive Computation and Machine Learning Series. MIT553

Press, 2001.554

Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states.555

Annals of Physics, 326:96–192, 2010.556

Matthias Seeger. Expectation propagation for exponential families. Technical report, Department of557

EECS, University of California at Berkeley, 2005.558

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of prob-559

abilistic models. In Advances in Neural Information Processing Systems 29 (NeurIPS). Curran560

Associates, Inc., 2016.561

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete graphical562

models. In Advances in Neural Information Processing Systems 33 (NeurIPS). Curran Associates,563

Inc., 2020.564

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open ques-565

tions. Founddations and Trends in Theoretical Computer Science, 5:207–388, 2010.566

Sahil Sidheekh, Kristian Kersting, and Sriraam Natarajan. Probabilistic flow circuits: Towards567

unified deep models for tractable probabilistic inference. In 39th Conference on Uncertainty568

in Artificial Intelligence (UAI), volume 216 of Proceedings of Machine Learning Research, pp.569

1964–1973. PMLR, 2023.570

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances in571

Neural Information Processing Systems 29 (NeurIPS), pp. 4799–4807. Curran Associates, Inc.,572

2016.573

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Squared neural families: A new class of574

tractable density models. arXiv preprint arXiv:2305.13552, 2023.575

Leslie G. Valiant. Negation can be exponentially powerful. In 11th Annual ACM Symposium on576

Theory of Computing, pp. 189–196, 1979.577

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-578

product networks. Machine Learning, 108(4):551–573, 2019a.579

Antonio Vergari, Nicola Di Mauro, and Guy Van den Broeck. Tractable probabilistic models: Repre-580

sentations, algorithms, learning, and applications. Tutorial at the 35th Conference on Uncertainty581

in Artificial Intelligence (UAI), 2019b.582

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional583

atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information584

Processing Systems 34 (NeurIPS), pp. 13189–13201. Curran Associates, Inc., 2021.585

Allan H. Vermeulen, Richard H. Bartels, and Glenn R. Heppler. Integrating products of B-splines.586

SIAM Journal on Scientific and Statistical Computing, 13:1025–1038, 1992.587

Benjie Wang, Matthew R. Wicker, and Marta Kwiatkowska. Tractable uncertainty for structure588

learning. In 39th International Conference on Machine Learning (ICML), pp. 23131–23150.589

PMLR, 2022.590

Li Wenliang, Danica J. Sutherland, Heiko Strathmann, and Arthur Gretton. Learning deep kernels591

for exponential family densities. In 36th International Conference on Machine Learning (ICML),592

volume 97 of Proceedings of Machine Learning Research, pp. 6737–6746. PMLR, 2019.593

Baibo Zhang and Changshui Zhang. Finite mixture models with negative components. In 4th In-594

ternational Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM),595

pp. 31–41. Springer, 2005.596

Honghua Zhang, Brendan Juba, and Guy Van den Broeck. Probabilistic generating circuits. In597

International Conference on Machine Learning, pp. 12447–12457. PMLR, 2021.598

14

Published as a conference paper at ICLR 2024

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-599

toregressive language generation. In 40th International Conference on Machine Learning (ICML),600

volume 202 of Proceedings of Machine Learning Research, pp. 40932–40945. PMLR, 2023.601

15

Published as a conference paper at ICLR 2024

W ∈ R3×3

⊙

W

Figure A.1: Computational units can be grouped into layers as to build a tensorized circuit.
Sum units each parameterized by the rows of W ∈ R3×3 (left, in purple) form a sum layer param-
eterized by W (right). Product units (left, in red) form an Hadamard product layer (right). Input
units (left, in yellow) form an input layer computing the same functions (right)

A CIRCUITS602

In Sec. 3 we introduced circuits in a tensorized form. Here we instead present the definitions and603

properties of circuits as they are usually defined in the literature, which will be used in App. B.604

Definition A.1 (Circuit (Choi et al., 2020; Vergari et al., 2021)). A circuit c is a parameterized605

computational graph over variables X encoding a function c(X) and comprising three kinds of606

computational units: input, product, and sum. Each product or sum unit n receives as inputs the607

outputs of other units, denoted with the set in(n). Each unit n encodes a function cn defined as: (i)608

fn(sc(n)) if n is an input unit, where fn is a function over variables sc(n) ⊆ X, called its scope,609

(ii)
∏

i∈in(n) ci(sc(ni)) if n is a product unit, and (iii)
∑

i∈in(n) wici(sc(ni)) if n is a sum unit, with610

wi ∈ R denoting the weighted sum parameters. The scope of a product or sum unit n is the union611

of the scopes of its inputs, i.e., sc(n) =
⋃

i∈in(n) sc(i).612

Note that tensorized circuits (Def. 1) are circuits where each input (resp. product and sum) layer613

consists of scalar input (resp. product and sum) units. For example, Fig. A.1 shows how compu-614

tational units are grouped into layers. A probabilistic circuit (PC) is defined as a circuit encoding615

a non-negative function. PCs that are smooth and decomposable (Def. A.2) enable computing the616

partition function and, more in general, performing variable marginalization efficiently (Prop. A.1).617

Definition A.2 (Smoothness and decomposability (Darwiche & Marquis, 2002)). A circuit is smooth618

if for every sum unit n, its input units depend all on the same variables, i.e, ∀i, j ∈ in(n) : sc(i) =619

sc(j). A circuit is decomposable if the inputs of every product unit n depend on disjoint sets of620

variables, i.e, ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.621

Proposition A.1 (Tractability (Choi et al., 2020)). Let c be a smooth and decomposable circuit over622

variables X whose input units can be integrated efficiently. Then for any Z ⊆ X and y an assignment623

to variables in X \ Z, the quantity
∫
c(y, z) dz can be computed exactly in time and space Θ(|c|),624

where |c| denotes the size of the circuit, i.e., the number of connections in the computational graph.625

The size of circuits in tensorized form is obtained by counting the number of connections between626

the scalar computational units (as detailed in App. A.1.1). Squaring circuits or their tensorized rep-627

resentation efficiently such that the resulting PC is smooth and decomposable (Def. A.2) requires the628

satisfaction of structured-decomposability, as showed in (Pipatsrisawat & Darwiche, 2008; Vergari629

et al., 2021).630

Definition A.3 (Structured-decomposability (Pipatsrisawat & Darwiche, 2008; Darwiche, 2009)). A631

circuit is structured-decomposable if (1) it is smooth and decomposable, and (2) any pair of product632

units n,m having the same scope decompose their scope at their input units in the same way.633

Note that shallow MMs are both decomposable and structured-decomposable. As anticipated in634

Sec. 3, the expressiveness of squared non-monotonic PCs that are also deterministic is the same635

as monotonic deterministic PCs, which are used for tractable maximum-a-posteriori (MAP) infer-636

ence. We prove it formally in App. B.6 by leveraging the definition of determinism that we show in637

Def. A.5. Before that, we introduce the definition of support of a computational unit.638

Definition A.4 (Support (Choi et al., 2020)). The support of a computational unit n over variables639

X is defined as the set of value assignments to variables in X such that the output of n is non-zero,640

i.e., supp(n) = {x ∈ val(X) | cn(x) ̸= 0}, where val(X) denotes the domain of variables X.641

16

Published as a conference paper at ICLR 2024

Definition A.5 (Determinism (Darwiche, 2001)). A circuit c is deterministic if for any sum unit642

n ∈ c its inputs have disjoint support (Def. A.4), i.e., ∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅.643

A.1 TENSORIZED CIRCUITS644

Def. 1 can be further generalized by introducing Kronecker product layers, which are the building645

blocks of other tensorized circuit architectures, such as randomized and tensorized sum-product646

networks (RAT-SPNs) (Peharz et al., 2020b), einsum networks (EiNets) (Peharz et al., 2020a).647

Definition A.6 (Tensorized circuit). A tensorized circuit c is a parameterized computational graph648

encoding a function c(X) and comprising of three kinds of layers: input, product and sum. Each649

layer comprises computational units defined over the same set of variables, also called its scope, and650

every non-input layer receives input from one or more layers. The scope of each non-input layer is651

the union of the scope of its inputs, and the scope of the output layer computing c(X) is X. Each652

input layer ℓ has scope Y ⊆ X and computes a collection of K functions fi(Y) ∈ R, i.e., ℓ outputs653

a K-dimensional vector. Each product layer ℓ computes either an Hadamard (or element-wise) or654

Kronecker product over the N layers it receives as input, i.e., ℓ = ⊙N
i=1ℓi or ⊗N

i=1ℓi, respectively.655

A sum layer with S sum units and receiving input form a previous layer ℓ ∈ RK , is parameterized656

by W ∈ RS×K and computes Wℓ.657

A.1.1 SIZE OF TENSORIZED CIRCUITS658

The time and space complexity of evaluating a circuit is linear in its size. The size |c| of a circuit c659

(Def. A.1) is obtained by counting the number of input connections of each scalar product or sum660

unit. In other words, it is the number of edges in its computational graph.661

If c is a tensorized circuit, then its size is obtained by counting the number of connections in its non-662

tensorized form. Fig. A.1 shows part of a tensorized circuit and its non-tensorized form. For sum663

layers, the number of scalar input connections is the size of its parameterization matrix, i.e., S ·K664

if it is parameterized by W ∈ RS×K . If ℓ is an Hadamard product layer computing ℓ = ⊙N
i=1ℓi,665

where each ℓi outputs a K-dimensional vector, then the number of its scalar input connections is666

N ·K. In case of Kronecker product layers as in the more general Def. A.6, i.e., ℓ = ⊗N
i=1ℓi where667

each ℓi outputs a K-dimensional vector, then the number of its scalar input connections is KN+1.668

A.2 TRACTABLE EXACT SAMPLING669

Each sum unit in a monotonic PC can be interpreted as a finitely discrete latent variable that can as-670

sume as many values as the number of input connections (Peharz et al., 2017). As such, a monotonic671

PC can be seen as a hierarchical MM. This allows us to sample exactly from the modeled distribution672

by (1) recursively sampling latent variables until input units are reached, and (2) sampling observed673

variables from the distributions modeled by input units (Vergari et al., 2019a).674

Such probabilistic interpretation of inner sum units for NPC2s is not possible, as they can output675

negative values. However, since NPC2s are smooth and decomposable (Def. A.2), they support676

efficient marginalization and hence conditioning (Proposition 1). This allows us to still sample677

exactly from the modeled distribution via inverse transform sampling. That is, we choose a variable678

ordering X1, X2, . . . , XD and sample them in an autoregressive fashion, i.e., x1 ∼ p(X1), x2 ∼679

p(X2 | x1), . . ., xD ∼ p(XD | x1, . . . , xD−1), which is still linear in the number of variables.680

B PROOFS681

B.1 SQUARING TENSORIZED CIRCUITS682

Proposition B.1 (Correctness of Alg. 1). Let c be a tensorized structured-decomposable circuit683

(Def. 1 and Def. A.3), then Alg. 1 recursively constructs the layers of the squared tensorized PC c2684

such that c2 is also structured-decomposable.685

Proof. The proof is by induction on the structure of c. Let ℓ be a sum layer having as input ℓi and
computing Wℓi, with W ∈ RS×K and ℓi computing an output in RS . If ℓ is the last layer of c (i.e.,

17

Published as a conference paper at ICLR 2024

the output layer), then S = 1 since c outputs a scalar, and the squared layer ℓ2 must compute

ℓ2 = (Wℓi) · (Wℓi) = (W ⊗W)(ℓi ⊗ ℓi) = (W ⊗W)ℓ2i ,

which requires squaring the input layer ℓi. By inductive hypothesis the squared circuit having ℓ2i
as output layer is structured-decomposable, hence also the squared circuit having ℓ2 as output layer
must be. If ℓ is a non-output sum layer, we still require computing the Kronecker product of its input
layer. The squared layer ℓ2 is again a sum layer that outputs a S2-dimensional vector, i.e.,

ℓ2 = ℓ⊗ ℓ = (Wℓi)⊗ (Wℓi) = (W ⊗W)(ℓi ⊗ ℓi) = (W ⊗W)ℓ2i

via mixed-product property (L11-15 in Alg. 1). Let ℓ be a binary3 Hadamard product layer comput-
ing ℓi ⊙ ℓii for input layers ℓi, ℓii each computing a K-dimensional vector. Then, the squared layer
ℓ2 computes the Hadamard product between K2-dimensional vectors, i.e.,

ℓ2 = (ℓi ⊙ ℓii)⊗ (ℓi ⊙ ℓii) = (ℓi ⊗ ℓi)⊙ (ℓii ⊗ ℓii) = ℓ2i ⊙ ℓ2ii

via mixed-product property with respect to the Hadamard product. By inductive hypothesis ℓ2i and686

ℓ2ii are the output layers of structured-decomposable circuits depending on a disjoint sets of variables.687

As such, the circuit having ℓ2 as output layer maintains structured-decomposability (L6-9 in Alg. 1).688

For the base case we consider the squaring of an input layer ℓ that computes K functions fi over689

some variables Y ⊆ X. We replace ℓ with its squaring ℓ2 which encodes the products fi(Y)fj(Y),690

1 ≤ i, j ≤ K, by introducing K2 functions gij such that gij(Y) = fi(Y)fj(Y) (L2-4 in Alg. 1).691

Squaring Kronecker product layers. In the case of ℓ being a binary Kronecker product layer692

instead as in the more general Def. A.6, then the squared layer ℓ2 computes the Kronecker product693

between K2-dimensional vectors up to a permutation of the entries, i.e.,694

ℓ2 = (ℓi ⊗ ℓii)⊗ (ℓi ⊗ ℓii) = R ((ℓi ⊗ ℓi)⊗ (ℓii ⊗ ℓii)) = R
(
ℓ2i ⊗ ℓ2ii

)
, (6)

by introducing a K4 × K4 permutation matrix R whose rows are all zeros except for one entry695

set to 1, which reorders the entries of ℓ2i ⊗ ℓ2ii as to recover the equality in Eq. (6). Note that such696

permutation maintains decomposability (Def. A.2), and its application can be computed by a sum697

layer having R as fixed parameters. Moreover, by inductive hypothesis, the squaring circuit having698

ℓ2 as output layer is still structured-decomposable. Finally, Alg. B.2 generalizes Alg. 1 as to support699

the squaring of Kronecker product layers as showed above (L10-11 in Alg. B.2).700

Algorithm B.2 squareTensorizedCircuit(ℓ,R)

Input: A tensorized circuit (Def. A.6) having output layer ℓ and defined on a tree RG rooted byR.
Output: The tensorized squared circuit defined on the same tree RG having ℓ2 as output layer computing ℓ⊗ℓ.
1: if ℓ is an input layer then
2: ℓ computes K functions fi(R)
3: return An input layer ℓ2 computing all K2

4: product combinations fi(R)fj(R)
5: else if ℓ is a product layer then
6: {(ℓi,Ri), (ℓii,Rii)} ← getInputs(ℓ,R)
7: ℓ2i ← squareTensorizedCircuit(ℓi,Ri)
8: ℓ2ii ← squareTensorizedCircuit(ℓii,Rii)
9: if ℓ = ℓi ⊙ ℓii then return ℓ2i ⊙ ℓ2ii

10: else return R
(
ℓ2i ⊗ ℓ2ii

)
, where R is

11: a permutation matrix (see proof of Prop. B.1)
12: else ▷ ℓ is a sum layer
13: {(ℓi,R)} ← getInputs(ℓ,R)
14: ℓ2i ← squareTensorizedCircuit(ℓi,R)
15: W ∈ RS×K ← getParameters(ℓ)
16: W′ ∈ RS2×K2

←W ⊗W
17: return W′ℓ2i

B.2 TRACTABLE MARGINALIZATION OF NPC2S701

Proposition 1. Let c be a tensorized structured-decomposable circuit where the products of func-702

tions computed by each input layer can be tractably integrated. Any marginalization of c2 obtained703

via Alg. 1 requires time and space O(L ·M2).704

Proof. Given c by hypothesis, Prop. B.1 ensures that the PC built via Alg. 1 computes c2 and is705

defined on the same tree RG (Def. 2) of c. As such, c2 is structured-decomposable and hence also706

3Without loss of generality, we assume product layers have exactly two layers as inputs.

18

Published as a conference paper at ICLR 2024

smooth and decomposable (see Def. A.3). Now, we make an argument about c and c2 in their707

non-tensorized form (Def. A.1) as to leverage Prop. A.1 for tractable marginalization later. The708

size of c is |c| ∈ O(L · M), where L is the number of layers and M the maximum number of709

scalar input connections of each layer in c (see App. A.1.1 for details). The size of c2 is therefore710

|c2| ∈ O(L ·M2), since Alg. 1 squares the output dimension of each layer as well as the size of the711

parameterization matrix of each sum layer. Since c2 is smooth and decomposable and the functions712

computed by its input layers can be tractably integrated, then Prop. A.1 ensures we can marginalize713

any subset of variables in time and space |c2| ∈ O(L ·M2).714

B.3 REPRESENTING PSD MODELS WITHIN THE LANGUAGE OF NPC2S715

Proposition 2. A PSD model with kernel function κ, defined over d data points, and parameterized716

by a PSD matrix A, can be represented as a mixture of squared NMMs (hence NPC2s) in time717

O(d3).718

Proof. The PSD model computes a non-negative function f(x;A,κ) = κ(x)⊤Aκ(x), where
κ(x) = [κ(x,x(1)), . . . , κ(x,x(d))] ∈ Rd, with data points x(1), . . . ,x(d), and A ∈ Rd×d is
PSD. Let A =

∑r
i=1 λiuiu

⊤
i be the eigendecomposition of A with rank r. Then we can rewrite

f(x;A,κ) as

f(x;A,κ) = κ(x)⊤
(∑r

i=1
λiuiu

⊤
i

)
κ(x) =

∑r

i=1
λi

(
u⊤
i κ(x)

)2
,

where λi > 0 since A is PSD. Therefore, such PSD model can be represented as a monotonic719

mixture of r ≤ d squared NMMs (Eq. (2)), whose d components computing κ(x) are shared. The720

eigendecomposition of A can be done in time O(d3), and materializing each squared NMMs (e.g.,721

as in Fig. 1) requires space O(d2). Furthermore, note that if A = uu⊤ is a rank-1 matrix, then722

f(x;A,κ) =
(
u⊤κ(x)

)
2 is exactly a squared NMM whose d components compute κ(x).723

B.4 RELATIONSHIP WITH TENSOR NETWORKS724

In this section, we detail the construction of a tensorized structured-decomposable circuit (Def. 1)725

that is equivalent to a matrix product state (MPS) tensor network (Pérez-Garcı́a et al., 2007), as we726

mention in Sec. 4. As such, the application of the Born rule as to retrieve a probabilistic model called727

Born machine (BM) (Glasser et al., 2019) is equivalent to squaring the equivalent circuit (Sec. 3).728

Proposition 3. A BM encoding D-dimensional tensor with m states by squaring a rank r MPS729

can be exactly represented as a structured-decomposable NPC2 in O(D · k4) time and space, with730

k ≤ min{r2,mr}.731

Proof. We prove it constructively, by using a similar transformation used by Glasser et al. (2019)732

to represent a non-negative MPS factorization as an hidden Markov model (HMM). Let X =733

{X1, . . . , XD} be a set of discrete variables each taking values in {1, . . . ,m}. Let T be a ten-734

sor with D m-dimensional indices. Given an assignment x = ⟨x1, . . . , xD⟩ to X, we factorize T735

via a rank r MPS factorization, i.e.,736

T [x1, . . . , xD] =

r∑

i1=1

r∑

i2=1

· · ·
r∑

iD−1=1

A1[x1, i1]A2[x2, i1, i2] · · ·AD[xD, iD−1] (7)

where A1,AD ∈ Rm×r and Aj ∈ Rm×r×r with 1 < j < D, for indices {i1, . . . , iD−1} and
denoting indexing with square brackets. To reduce T to being computed by a tensorized structured-
decomposable circuit c, i.e., such that c(x) = T [x1, . . . , xD] for any x, we perform the following
construction. First, we perform a CANDECOMP/PARAFAC (CP) decomposition (Kolda & Bader,
2009) of each Aj with 1 < j < D, i.e.,

Aj [xj , ij−1, ij] =

k∑

sj=1

Bj [ij−1, sj]Vj [xj , sj]Cj [ij , sj]

19

Published as a conference paper at ICLR 2024

where k ≤ min{r2,mr} is the maximum rank of the decomposition, and Vj ∈ Rm×k, Bj ∈ Rr×k,
Cj ∈ Rr×k. Then, we “contract” each Cj with Bj+1 by computing

Wj [sj , sj+1] =

r∑

ij=1

Cj [ij , sj]Bj+1[ij , sj+1]

with Wj ∈ Rk×k for 1 < j < D − 1. In addition, we “contract” CD−1 with AD by computing

VD[xD, sD−1] =

r∑

iD−1=1

CD−1[iD−1, sD−1]AD[xD, iD−1].

In addition, for notation clarity we rename B2 with W1 and A1 with V1. By doing so, we can
rewrite Eq. (7) as a sum with indices {s2, . . . , sD−1} over products, i.e.,

T [x1, . . . , xD] =

r∑

i1=1

V1[x1, i1]

k∑

s2=1

W2[i1, s2]V[x2, s2]

· · ·
k∑

sD−1=1

WD−2[sD−2, sD−1]VD−1[xD−1, sD−1]VD[xD, sD−1]

Fig. B.1 shows an example of such MPS factorization via CP decompositions. We see that we can737

encode the products over the same indices using a Hadamard product layers, and summations over738

indices {s2, . . . , xD−1} with sum layers parameterized by the Wj . More precisely, the sum layers739

that sum over s2 and sD−1 are parameterized by matrices of ones. Each Vj with 1 ≤ j ≤ D is740

instead encoded by an input layer depending on the variable Xj and computing k functions fl(Xj)741

such that fl(xj) = Vj [xj , l] with 1 ≤ j ≤ k. The tensorized circuit constructed in this way is742

structured-decomposable, as it is defined on a linear tree RG (e.g., Fig. 2a) induced by the variable743

ordering implicitly stated by the MPS factorization (Eq. (7), see App. B.4 for details). Fig. B.2744

shows the circuit representation corresponding to the MPS reported in Fig. B.1b.745

Finally, note that the number of parameters of such tensorized circuit correspond to the size of746

all Wj and Vj introduced above, i.e., O(D · k2) where k ≤ min{r2,mr}. Moreover, the CP747

decompositions at the beginning can be computed using iterative methods whose iterations require748

polynomial time (Kolda & Bader, 2009). To retrieve an equivalent BM, we can square the circuit749

constructed in this way using Alg. 1, which results in a circuit having size O(D ·k4) (see Prop. B.1).750

751

A1 A2 A3 A4

X1 X2 X3 X4

(a)

A1

B2

V2

C2

V3

B3

V3

C3

A4

X1 X2 X3 X4

(b)

V1

W1

V2

W2

V3V3

V4

X1 X2 X3 X4

(c)

Figure B.1: Further decomposing a matrix product state (MPS) via CP decompositions. Tensor
networks are represented using the Penrose graphical notation, where circles denote tensors and
their connections denote summations over shared indices, and variables X1, X2, X3, X4 are input
indices. Given a MPS (a), we perform a CP decomposition of A2 and A3 (b). Red edges denote
additional indices given by the CP decompositions. Then, we rename A1 with V1, B2 with W1.
Finally, we contract C2 with B3, and C3 with A4 resulting in tensors W2 and V4, respectively (c).
Fig. B.2 shows the tensorized circuit corresponding to such tensor network, where V1,V2,V3,V4

and W1,W2 parameterize input layers and sum layers, respectively.

20

Published as a conference paper at ICLR 2024

V1[x1]

V2[x2]

V3[x3]

V4[x4]

W1

1

W2

⊙

⊙

⊙

(a)

X3,X4

X4 X3

X2

X2,X3,X4 X1

X1,X2,X3,X4

(b)

Figure B.2: Matrix product states (MPS) as structured-decomposable circuits. The decom-
posed MPS over three variables showed in Fig. B.1c can be immediately represented as a tensorized
structured-decomposable circuit (a) defined on a linear tree RG (b, matching the colors of layers)
having Hadamard product layers and sum layers parameterized by W1,W2 and a row vector of
ones 1. Each input layer maps x1, x2, x3, x4 to rows in V1,V2,V3,V4, respectively.

B.4.1 RELATIONSHIP WITH HIDDEN MARKOV MODELS752

MPS tensor networks where each tensor Ai is non-negative can be seen as inhomogeneous hidden753

Markov models (HMMs) as showed by Glasser et al. (2019), i.e., where latent state and emitting754

transitions do not necessarily share parameters. As such, the tensorized structured-decomposable755

circuit c that is equivalent to a MPS (see App. B.4) is also an inhomogenous HMM if c is monotonic.756

In Sec. 5 we experiment with a tensorized monotonic PC that is an inhomogenous HMM to distill757

a large language model, as to leverage the sequential structure of the sentences. We compare it758

against a NPC2 that is the squaring of a MPS (also called Born machine (Glasser et al., 2019)) or,759

equivalently, the squaring of an inhomogenous HMM-like whose parameters can be negative.760

B.5 EXPONENTIAL SEPARATION761

Theorem 1. There is a class of non-negative functions F over variables X that can be compactly762

represented as shallow squared NMMs (and hence squared non-monotonic PCs) but for which the763

smallest structured-decomposable monotonic PC computing any F ∈ F has size 2Ω(|X|).764

Proof. For the proof of Theorem 1, we start by constructing F by introducing a variant of the unique765

disjointness (UDISJ) problem, which seems to have first been introduced by De Wolf (2003). The766

variant we consider here is defined over graphs, as detailed in the following definition.767

Definition B.1 (Unique disjointness function). Consider an undirected graph G = (V,E), where V768

denotes its vertices and E its edges. To every vertex v ∈ V we associate a Boolean variable Xv and769

let XV = {Xv | v ∈ V } be the set of all these variables. The unique disjointness function of G is770

defined as771

UDISJG(Xv) :=

(
1−

∑

uv∈E

XuXv

)2

. (8)

The UDISJ function as a non-monotonic circuit. We will construct F as the class of functions772

UDISJG for graphs G ∈ G, where G is a family of graphs that we will choose later. Regardless773

of the way the class G is picked, we can compactly represent UDISJG as a squared structured-774

decomposable (Def. A.3) and non-monotonic circuit as follows. First, we represent the function775

c(XV) = 1−∑uv∈E XuXv as sum unit computing 1 · a(XV) + (−1) · b(XV) where776

• a is a circuit gadget that realizes an unnormalized uniform distribution over the domain777

of variables in XV , i.e., a(XV) =
∏

v∈V (1{Xv = 0} + 1{Xv = 1}) where 1{Xv = 0}778

(resp. 1{Xv = 1}) is an indicator function that outputs 1 when Xv is set to 0 (resp. 1);779

21

Published as a conference paper at ICLR 2024

• b is another sum unit whose inputs are product units over the input units780

1{Xu = 1} ,1{Xv = 1} if there is an edge uv in G, i.e., b(XV) =
∑

uv∈E 1{Xu = 1} ·781

1{Xv = 1}.782

Note that b may not be smooth, but we can easily smooth it by adding to every product an additional783

input that is a circuit similar to a that outputs 1 for any input Xuv , where Xuv = XV \ {Xu, Xv}.784

Since c is structured-decomposable (Def. A.3), we can easily multiply it with itself to realize c2785

that would be still a structured-decomposable circuit whose size is polynomially bounded as |c2| ∈786

O(|c|2) (Vergari et al., 2021). In particular, in this case we have that |c| is a polynomial in the787

number of variables (or vertices) |XV | by the construction above. Furthermore, note that c2 is non-788

monotonic as one of its sum unit has negative parameters (i.e., −1) to encode the subtraction in789

Eq. (8).790

The lower bound for monotonic circuits. To prove the exponential lower bound for monotonic791

circuits in Theorem 1, we will use an approach that has been used in several other works (Martens792

& Medabalimi, 2014; de Colnet & Mengel, 2021). This approach is based on representing a decom-793

posable circuit (and hence a structured-decomposable one) as a shallow mixture whose components794

are balanced products, as formalized next.795

Definition B.2. Let X be a set of variables. A balanced decomposable product over X is a function796

from X to R that can be written as f(Y) × h(Z) where (Y,Z) is a partitioning of X, f and h are797

functions to R and |X|/3 ≤ |Y| ≤ 2|X|/3.798

Theorem B.1 (Martens & Medabalimi (2014)). Let F be a non-negative function over Boolean
variables X computed by a smooth and decomposable circuit c. Then, F can be written as a sum of
N balanced decomposable products (Def. B.2) over X, with N ≤ |c| in the form4

F (X) =

N∑

k=1

fk(Yk)× hk(Zk),

where (Yk,Zk) is partitioning of X for 1 ≤ k ≤ N . If c is structured-decomposable, the N799

partitions {(Yk,Zk)}Nk=1 are all identical. Moreover, if c is monotonic, then all fk, hk only compute800

non-negative values.801

Intuitively, Thm. B.1 tells us that to lower bound the size of c we can lower bound N . To this end, we802

first encode the UDISJ function (Eq. (8)) as a sum of N balanced products and show the exponential803

growth of N for a family of graphs. We start with a special case for a representation in the following804

proposition.805

Proposition B.2. Let Gn be a matching of size n, i.e., a graph consisting of n edges none of which
share any vertices. Assume that the UDISJ function (Eq. (8)) for Gn is written as a sum of products
of balanced partitions

UDISJGn(Y,Z) =

N∑

k=1

fk(Y)× hk(Z),

where for every edge uv in Gn we have that Xu ∈ Y and Xv ∈ Z. Then N = 2Ω(n).806

To prove the above results, we will make an argument on the rank of the so-called communication807

matrix, also known as the value matrix, for a function F and a fixed partition (Y,Z).808

Definition B.3. Let F be a function over (Y,Z), its communication matrix MF is a 2|Y| × 2|Z|809

matrix whose rows (resp. columns) are uniquely indexed by assignments to Y (resp. Z) such that810

for a pair of index5 (iY, jZ), the entry at the row iY and column jZ in MF is F (iY, jZ).811

4In Martens & Medabalimi (2014), Theorem 38, this result is stated with N ≤ |c|2. The square materializes
from the fact that they reduce their circuits to have all their inner units to have exactly two inputs, as we already
assume, following de Colnet & Mengel (2021).

5An index iY (resp. jZ) is a complete assignment to Boolean variables in Y (resp. Z). See Example 1.

22

Published as a conference paper at ICLR 2024

Example 1. Let us consider a simple matching on 6 vertices, where Y correspond to the first 3812

vertices, and Z to the last 3, and where there is an edge between the first, second and third vertices813

of Y and Z. The matrix MF is an 8-by-8 matrix, a row and a column for each assignment of the 3814

binary variables associated to each vertex; it is given by815

Y\Z 000 100 010 001 110 101 011 111
000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0
010 1 1 0 1 0 1 0 0
001 1 1 1 0 1 0 0 0
110 1 0 0 1 1 0 0 1
101 1 0 1 0 0 1 0 1
011 1 1 0 0 0 0 1 1
111 1 0 0 0 1 1 1 4

816

Note that the name UDISJ comes from the fact that MF (i, j) = 0 if and only if Y and Z share a817

single entry equal to 1.818

In the following, we will rely on the following quantity.819

Definition B.4 (Non-negative rank). The non-negative rank of a non-negative matrix A ∈ Rm×n
+ ,820

denoted rank+(A), is the smallest k such that there exist k nonnegative rank-one matrices {Ai}ki=1821

such that A =
∑k

i=1 Ai. Equivalently, it is the smallest k such that there exists two non-negative822

matrices B ∈ Rm×k
+ and C ∈ Rk×n

+ such that A = BC.823

Given a function F written as a sum over N decomposable products (see Thm. B.1) over a fixed par-824

tition (Y,Z), we now show that the non-negative rank of its communication matrix MF (Def. B.3)825

is a lower bound of N .826

Lemma B.1. Let F (X) =
∑N

k=1 fk(Y)× hk(Z) where fk and hk are non-negative functions and
let MF be the communication matrix (Def. B.3) of F for the partition (Y,Z), then it holds that

rank+(MF) ≤ N.

Proof. This proof is an easy extension of the proof of Lemma 13 from de Colnet & Mengel (2021).827

Assume w.l.o.g. that fk(Y) × hk(Z) ̸= 0 for any complete assignment to Y and Z.6 Let Mk828

denote the communication matrix of the function fk(Y) × hk(Z). By construction, we have that829

MF =
∑N

k=1 Mk. Furthermore, since all values in MF are non-negative by definition, rank+(Mk)830

is defined for all k and by sub-additivity of the non-negative rank we have that rank+(MF) ≤831 ∑N
k=1 rank

+(Mk). To conclude the proof, it is sufficient to show that Mk are rank-1 matrices, i.e.,832

rank+(Mk) = 1. To this end, consider an arbitrary k. Since fk(Y) × hk(Z) ̸= 0, there is a row in833

Mk that is not a row of zeros. Say it is indexed by iY, then its entries are of the form fk(iY)×hk(jZ)834

for varying jZ. In any other rows indexed by i′Y we have fk(i
′
Y) × hk(jZ) = (fk(i

′
Y)/fk(iY)) ×835

fk(iY) × hk(jZ) for varying jZ. Consequently, all rows are non-negative multiples of the iY row,836

and therefore rank+(Mk) = 1.837

To complete the proof of Prop. B.2, we leverage a known lower bound of the non-negative rank of838

the communication matrix of the UDISJ problem. The interested reader can find more information839

on this result in the books Roughgarden (2016), Gillis (2020) and the references therein.840

Theorem B.2 (Fiorini et al. (2015)). Let a UDISJ function defined as in Prop. B.2, and MUDISJ be
its communication matrix over a partition (Y,Z), then it holds that

(3/2)n ≤ rank+(MUDISJ).

Using Thm. B.2 and Lem. B.1, we directly get Prop. B.2. So we have shown that, for a fixed841

partition of variables (Y,Z), every monotonic circuit c encoding the UDISJ function (Eq. (8)) of842

a matching of size n has size |c| ≥ 2Ω(n). However, the smallest non-monotonic circuit encoding843

6If this were not the case we could simply drop the term from the summation, which would clearly reduce
the number of summands.

23

Published as a conference paper at ICLR 2024

the same function has polynomial size in n (see the construction of the UDISJ function as a circuit844

above). Now, to complete the proof for the exponential lower bound in Theorem 1, we need to845

find a function class F where this result holds for all possible partitions (Y,Z). Such function846

class consists of UDISJ functions over a particular family of graphs, as detailed in the following847

proposition.848

Proposition B.3. There is a family of graphs G such that for every graph Gn = (Vn, En) ∈ G we849

have |Vn| = |En| = O(n), and any monotonic structured-decomposable circuit representation of850

UDISJGn
has size 2Ω(n).851

Proof. We prove it by constructing a class of so-called expander graphs, which we introduce next.852

We say that a graph G = (V,E) has expansion ε if, for every subset V ′ of V of size at most |V |/2,853

there are at least ε|V ′| edges from V ′ to V \ V ′ in G. It is well-known, see e.g. Hoory et al. (2006),854

that there are constants ε > 0 and d ∈ N and a family (Gn)n∈N of graphs such that Gn has at least n855

vertices, expansion ε and maximal degree d. We fix such a family of graphs in the remainder and856

denote by Vn, resp. En, the vertex set, resp. the edge set, of Gn.857

Let c be a monotonic structured-decomposable circuit of size N computing UDISJGn
. Then, by858

using Thm. B.1, we can write it as859

UDISJGn
(Y,Z) =

N∑

k=1

fk(Y)× hk(Z) (9)

where (Y,Z) is a balanced partition of XV . Let VY = {v ∈ Vn | Xv ∈ Y} and VZ = {v ∈ Vn |
Xv ∈ Z}. Then (VY, VZ) form a balanced partition of Vn. By the expansion of Gn, it follows that
there are Ω(n) edges from vertices in VY to vertices in VZ. By greedily choosing some of those
edges and using the bounded degree of Gn, we can construct an edge set E′

n of size Ω(n) that is a
matching between Y and Z, i.e., all edges in E′

n go from Y to Z and every vertex in Vn is incident
to only one edge in E′

n. Let V ′
n be the set of endpoints in E′

n and XV ′
n
⊆ XV be the variables

associated to them. We construct a new circuit c′ from c by substituting all input units for variables
Xv that are not in XV ′

n
by 0. Clearly, |c′| ≤ |c| and hence all the lower bounds for |c′| are lower

bounds for |c|. Let Y = XV ′
n
∩Y and Z = XV ′

n
∩ Z. By construction c′ computes the function

UDISJG′
n
(Y,Z) =

1−

∑

uv∈E′
n

XuXv

2

which corresponds to solving the UDISJ problem over the graph G′
n = (V ′

n, E
′
n). From Eq. (9) we

get that

UDISJG′
n
(Y,Z) =

N∑

k=1

f ′
k(Y)× h′

k(Z),

where f ′
k (resp. h′

k) are obtained from fk (resp. hk) by setting all the variables not in XV ′
n

to 0. Since860

c′ is monotonic by construction and |E′
n| = Ω(n), from Prop. B.2 it follows that N = 2Ω(n).861

Prop. B.3 concludes the proof of Theorem 1, as we showed the existence of family of graphs for862

which the smallest structured-decomposable monotonic circuit computing the UDISJ function over863

n variables has size 2Ω(n). However, the smallest structured-decomposable non-monotonic circuit864

has size polynomial in n, whose construction has been detailed at the beginning of our proof.865

B.6 SQUARING DETERMINISTIC CIRCUITS866

In Sec. 4.1 we argued that squaring any non-monotonic, smooth, decomposable (Def. A.2), and867

deterministic (Def. A.5) circuit yields a monotonic and deterministic PC. As a consequence, any868

function computed by a NPC2 that is deterministic can be computed by a monotonic and deter-869

ministic PC. Therefore, we are interested in squaring structured-decomposable circuits that are not870

deterministic. Below we formally prove Proposition 4.871

24

Published as a conference paper at ICLR 2024

Proposition 4. Let c be a smooth, decomposable and deterministic circuit over variables X possibly872

computing a negative function. Then, the squared circuit c2 is monotonic and has the same structure873

(hence size) of c.874

Proof. The proof is by induction. Let n ∈ c be a product unit that computes cn(Z) =875 ∏
i∈in(n) cn(Zi), with Z ⊆ X and (Z1, . . . ,Z|in(n)|) forming a partitioning of Z. Then its876

squaring computes c2n(Z) =
∏

i∈in(n) c
2
n(Zi). Now consider a sum unit n ∈ c that computes877

cn(Z) =
∑

i∈in(n) wici(Z) with Z ⊆ X and wi ∈ R. Then its squaring computes c2n(Z) =878 ∑
i∈in(n)

∑
j∈in(n) wiwjci(Z)cj(Z). Since c is deterministic (Def. A.5), for any i, j with i ̸= j879

either ci(Z) or cj(Z) is zero for any assignment to Z. Therefore, we have that880

c2n(Z) =
∑

i∈in(n)

w2c2i (Z). (10)

This implies that in deterministic circuits, squaring does not introduce additional components that881

encode (possibly negative) cross-products. The base case is defined on an input unit n that models882

a function fn, and hence its squaring is an input unit that models f2
n. By induction c2 is constructed883

from c by squaring the parameters of sum units wi and squaring the functions fn modeled by input884

units. Moreover, the number of inputs of each sum unit remains the same, as we observe in Eq. (10),885

and thus c2 and c have the same size.886

C EFFICIENT LEARNING OF NPC2S887

102 103

0.0

0.5

1.0

Ti
m

e
pe

rb
at

ch
(s

)

BS

G
PU

M
em

or
y

(G
iB

)

c(x)

Z =
∫
c2(x)dx

5

10

15

20
102 K

Figure C.1: Evaluating the squared circuit representation adds little overhead during training.
By learning by MLE (Eq. (4)) and batched gradient descent, the time and space required to compute
the partition function Z of c2 is constant w.r.t. the batch size (BS) (left). By fixing the batch size to
512 and varying the output dimensionality (K) of each layer (right), the resources needed to compute
Z are similar to the ones needed to evaluate c (i.e., c(X)). For the left figure, we fix K = 256 and
vary the BS, while for the right figure we fix BS = 512 and vary K. The plots share the y-axis.

In this section, we investigate the computational cost of learning NPC2s with a series of benchmarks,888

showing that NPC2s add little computational overhead over traditional monotonic PCs (MPCs).889

Efficient renormalization in practice. As suggested by the MLE objective (Eq. (4)), squaring the890

tensorized circuit c with Alg. 1 is only required to compute the partition function Z =
∫
c2(x)dx.891

In addition, we need to compute Z only once per parameter update via gradient ascent, as Z does892

not depend on the training data. For these reasons, the increased computational burden of evaluating893

a squared circuit (see Proposition 1) as to compute Z is negligible, and it is independent w.r.t. the894

batch size. Fig. C.1 illustrates this aspect by comparing the time needed to evaluate c on a batch of895

data and to compute the partition function Z. The results showed in Fig. C.1 are obtained by running896

benchmarks on NPC2s that are similar in size to the ones we experiment with in Sec. 5. That is,897

we benchmark a mixture of 32 NPC2s, each having an architecture built from a randomly-generated898

tree RG (see App. F for details) approximating the density function of BSDS300 (the data set with899

highest number of variables, see Table H.1). The input layers compute Gaussian distributions.900

Training efficiency on UCI data sets. We benchmark the computational cost of learning NPC2s901

on UCI data sets (Table H.1). Fig. C.2 compares time and memory required to learn the best NPC2s902

and MPCs showed in Fig. 4, while Fig. C.3 compares time and memory required to learn NPC2s903

and MPCs in a worse scenario for NPC2s where the batch size is small and the layer dimension-904

ality is large, as NPC2s benefit from using large batch sizes as discussed above. NPC2s add very905

25

Published as a conference paper at ICLR 2024

little overhead during training in most configurations when compared to MPCs, as computing the906

partition function Z is comparable to evaluating MPCs on a batch of samples. In particular, on Gas907

(|X| = 8), NPC2 takes more time and memory to compute Z (times are 6ms and 121ms, while908

memory allocations are 0.6GiB and 5.8GiB), but it is only slightly more than the cost of computing909

c for MPCs (time 144ms and memory 4.4GiB). Moreover, note that NPC2s achieve about a ×2910

improvement on the log-likelihood on Gas. On the much higher dimensional data set BSDS300911

(|X| = 63) instead, we found that training NPC2 is even cheaper as it requires fewer parameters912

while still achieving an higher log-likelihood (128.38 rather than 123.3).913

Hardware and significance of benchmarks. The benchmarks mentioned above and illustrated in914

Figs. C.1 to C.3 have been run on a single NVIDIA RTX A6000 with 48GiB of memory. The915

measured times are averaged over 50 independent circuit evaluations.916

0 20 40 60

10−2

10−1

Ti
m

e
pe

rb
at

ch
(s

)

5.56

-22.45
-32.11

123.3

10.98
-20.41

-26.92

128.38

|X|G
PU

M
em

or
y

(G
iB

)

c(x)

c2(x)

1

2

3

4

5
0 20 40 60

5.56 -22.45 -32.11

123.3

10.98

-20.41

-26.92
128.38

|X|

Z =
∫
c(x)dx

Z =
∫
c2(x)dx

Figure C.2: NPC2s add little overhead during training on real-world data sets, while improving
log-likelihoods. We evaluate time and memory required by monotonic PCs (MPCs) and NPC2s
to perform one optimization step on UCI data sets (Gas, Hepmass, MiniBooNE, BSDS300) with
number of variables |X| and using the best hyperparameters found (see App. H.3). We benchmark
the computation of c(x) by MPCs and c2(x) by NPC2s on a batch x of data (left), as well as the
partition functions Z for both models (right), and label the data points with the final log-likelihoods
achieved by the corresponding models (as also reported in Fig. 4). The plots share the y-axis. For
NPC2s, computing the partition function Z is more expensive both in time and memory (right), but
it is still very similar to the cost of evaluating c(x) or c2(x) (left).

0 20 40 60

10−2

10−1

Ti
m

e
pe

rb
at

ch
(s

)

|X|G
PU

M
em

or
y

(G
iB

)

c(x)

c2(x)

3

6

9

12
0 20 40 60 |X|

Z =
∫
c(x)dx

Z =
∫
c2(x)dx

Figure C.3: NPC2s add little overhead during training even with relatively small batch sizes.
We evaluate time and memory required by monotonic PCs (MPCs) and NPC2s to perform one opti-
mization step on UCI data sets (Gas, Hepmass, MiniBooNE, BSDS300) with respect to the number
of variables |X| and using the same hyperparameters (512 as batch size, 512 as layer dimensionality,
and Gaussian input layers). The plots share the y-axis. The cost of computing c2(x) on a batch x
of data by NPC2s is only slightly higher than the cost of computing c(x) by MPCs (left), while the
cost of computing Z for NPC2s is comparable to evaluating c2(x) or c(x) (right).

D THE SIGNED LOG-SUM-EXP TRICK917

Scaling squared non-monotonic PCs to more than a few tens (resp. hundreds) of variables without918

performing computations in log-space is infeasible in 32-bit (resp. 64-bit) floating point arithmetic,919

as we illustrate in Fig. D.1. For this reason, we must perform computations in the log-space even920

in presence of negative values. The idea is to represent non-zero outputs y ∈ RS of each layer921

in terms of the element-wise logarithm of their absolute value log |y| and their element-wise sign922

sign(y) ∈ {−1, 1}S , i.e., such that y = sign(y)⊙ exp(log |y|).923

26

Published as a conference paper at ICLR 2024

23 24 25 26 27 28 29

Number of variables

1050

10100

10150

10200

Z

+∞

// //

fp32
fp64
fp32 +∞
fp64 +∞

0

120

240

360

lo
g
Z

Figure D.1: Squared non-monotonic PCs cannot scale
without performing computations in log-space. Parti-
tion functions (and their natural logarithm) of squared non-
monotonic PCs having Gaussian input units, with increasing
number of variables V and having depth ⌈log2 V ⌉ computed
using 32-bit and 64-bit floating point arithmetic.

In practice, we evaluate product and sum layers according to the following evaluation rules. Given
an Hadamard product layer ℓ, then it computes and propagates both log |ℓ| = ∑N

i=1 log |ℓi| and
sign(ℓ) =

⊙N
i=1 sign(ℓi) for some inputs {ℓi}Ni=1. Given a sum layer ℓ parameterized by W ∈

RS×K and having ℓ′ as input layer, then it computes and propagates both log |ℓ| = α+ log |s| and
sign(ℓ) = sign(s) where α and s are defined as

α = 1 · max
1≤j≤S

{log |ℓ′[j]|} s = W
(
sign(ℓ′)⊙ exp(log |ℓ′| −α)

)

by assuming s ̸= 0, 1 denoting a S-dimensional vector of ones, ℓ′[j] denoting the j-th entry of the924

output of ℓ′, and exp being applied element-wise. We call signed log-sum-exp trick the evaluation925

rule above for sum layers, which generalizes the log-sum-exp trick (Blanchard et al., 2021) that is926

used to evaluate tensorized monotonic PC architectures (Peharz et al., 2020a).927

For the more general definition of tensorized circuits instead (Def. A.6), given a Kronecker product928

layer ℓ, then it computes both log |ℓ| = ⊕N
i=1 log |ℓi| and sign(ℓ) =

⊗N
i=1 sign(ℓi), where

⊕
929

denotes an operator similar to the Kronecker product but computing sums instead.930

E SPLINES AS EXPRESSIVE INPUT COMPONENTS931

0.0 0.2 0.4 0.6 0.8 1.0

−1

0

1
Figure E.1: Splines represent a class of flexible
non-linear functions. A quadratic (k = 2) spline
(in black) over n = 4 knots chosen uniformly in
(0, 1) (i.e, 0.2, 0.4, 0.6 and 0.8) is computed by a
linear combination of n+k+1 = 7 distinct basis
functions (each colored differently).

Polynomials defined on fixed intervals are candidate functions to be modeled by components (resp.932

input layers) of squared NMMs (Sec. 2) (resp. NPC2s Sec. 3). This is because they can be negative933

function and their product can be tractably integrated. In particular, we experiment with piecewise934

polynomials, also called splines. An univariate spline function of order k is a piecewise polynomial935

defined on a variable X , and the n values of X where polynomials meet are called knots. B-splines936

of order k are basis functions for continuous spline functions of the same degree. In practice, we can937

represent any spline function f of order k defined over n knots inside an interval (a, b) as a linear938

combination of n+ k + 1 basis functions, i.e.,939

f(X) =
∑n+k+1

i=1
αiBi,k(X) (11)

where αi ∈ R are the parameters of the spline and Bi,k(X) are polynomials of order k (i.e., the basis940

of f), which are unequivocally determined by the choice of the n knots. In particular, each Bi,k(X)941

is a non-negative polynomial that is recursively defined with the Cox-de-Boor formula (de Boor,942

1971; Piegl & Tiller, 1995). Given two splines f, g of order k defined over n knots and represented943

in terms of n+ k + 1 basis functions as in Eq. (11), we can write their product integral as944

∫ b

a

f(X)g(X) dX =
∑n+k+1

i=1

∑n+k+1

j=1
αiβj

∫ b

a

Bi,k(X)Bj,k(X) dX (12)

27

Published as a conference paper at ICLR 2024

where αi ∈ R (resp. βj ∈ R) denote the parameters of f (resp. g). Therefore, integrating a945

product of splines requires integrating products of their basis functions. Among the various way of946

computing Eq. (12) exactly (Vermeulen et al., 1992), we can do it in time O(n2 ·k2) by representing947

the product Bi,k(X)Bj,k(X) as the basis polynomial of another B-spline of order 2k+1, and finally948

integrating it in the interval of definition. Fig. E.1 shows an example of a spline.949

Since each Bi,k is non-negative, we can use B-splines as components (resp. modeled by input layers)950

of traditional MMs (resp. monotonic PCs) by assuming each spline parameter αi to be non-negative.951

This is the case of monotonic PCs we experimented with in Sec. 5.952

F TREE REGION GRAPHS953

X3,X4

X4 X3

X2

X2,X3,X4 X1

X1,X2,X3,X4

X2 X3

X2,X3 X1,X4,X5

X1,X2,X3,X4,X5

X1 X4,X5

X4 X5

Figure F.1: Different ways to construct region graphs. The left figure illustrates a linear tree (LT)
region graph (Def. 2) over four variables, which decomposes variables one by one. The right figure
shows a possible binary tree (RT) region graph over five variables, which recursively splits them.

Since we require structured-decomposability to square circuits (see Sec. 3.2), we construct their954

architecture based on tree RGs (Def. 2). We choose to experiment with two kinds of tree RGs:955

binary tree (BT) and linear tree (LT). Following Peharz et al. (2020b), the BT is built by recursively956

partitioning variables evenly and randomly until regions with only one variable are obtained. The957

LT is built by (1) shuffling the variables randomly and then (2) recursively partitioning variables958

one by one, i.e., a set of variables {Xi, . . . , XD} is partitioned in {Xi} and {Xi+1, . . . , XD} for959

1 ≤ i ≤ D − 1. Fig. F.1 shows examples of LT and BT RGs. Note that the LT is the same960

on which the circuit representation of matrix-product states (MPS) (Pérez-Garcı́a et al., 2007) and961

TTDE (Novikov et al., 2021) depend on (see also Sec. 4 and App. B.4).962

G ADDITIONAL RELATED WORKS963

Squared neural family (SNEFY) (Tsuchida et al., 2023) have been concurrently proposed as a964

class of models squaring the 2-norm of the output of a single-hidden-layer neural network. Under965

certain parametric conditions, SNEFYs can be re-normalized as to model a density function, but966

they do not guarantee tractable marginalization of any subset of variables as our NPC2s do, unless967

they encode a fully-factorized distribution, which would limit their expressiveness. Hence, SNEFYs968

can be employed in our NPC2s to model multivariate units in input layers with bounded scopes.969

The rich literature of PCs provides several algorithms to learn both the structure and the param-970

eters of circuits (Poon & Domingos, 2011; Peharz et al., 2017; Di Mauro et al., 2021; Dang et al.,971

2021; Liu & Van den Broeck, 2021; Liu et al., 2023). However, in these works circuits are always972

assumed to be monotonic. A first work considering subtractions is Dennis (2016) which generalizes973

the ad-hoc constraints over Gaussian NMMs (Zhang & Zhang, 2005) to deep PCs over Gaussian974

inputs by constraining their structure and reparameterizing their sum weights. Shallow NMM rep-975

resented as squared circuits have been investigated for low-dimensional categorical distributions976

in (Loconte et al., 2023). Circuit representations encoding probability generating functions allow977

negative coefficients, but in symbolic computational graphs (Zhang et al., 2021).978

28

Published as a conference paper at ICLR 2024

GT MPC MPC2 NPC2 GT MPC MPC2 NPC2

5 10

−2.0

−1.8

A
ve

ra
ge

L
L

K =

Rings

5 10

−2.25

−2.00

Cosine

5 10

−2.40

−2.35

Funnel

5 10

−2.425

−2.400

Banana

MPC
MPC2

NPC2

Figure H.1: Negative parameters increases the expressiveness of NPC2s. From left to right
(above) and for each bivariate density, we show the ground truth (GT) and its estimation by a mono-
tonic PC (MPC), a squared monotonic PC (MPC2), and a NPC2 having input layers computing
quadratic splines (App. E) and with the same number of parameters. Moreover, (below) we show
the average log-likelihoods (and one standard deviation with 10 independent runs) on unseen data
achieved by a monotonic MPC, a squared monotonic MPC2, and a NPC2 by increasing the dimen-
sionality of input layers K.

H EXPERIMENTAL SETTINGS AND COMPLEMENTARY RESULTS979

H.1 CONTINUOUS SYNTHETIC DATA980

Following (Wenliang et al., 2019) we experiment with monotonic PCs, their squaring and NPC2s981

on synthetic continuous 2D data sets, named rings, cosine, funnel and banana. We generate each982

synthetic data set by sampling 10 000/1 000/2 000 training/validation/test samples. In these ex-983

periments, we are interested in studying whether NPC2s can be more expressive in practice, with-984

out making assumptions on the data distribution and therefore choosing parametric distributions as985

components. For this reason, we choose components computing the product of univariate spline986

functions (App. E) over 32 knots that are uniformly chosen in the data domain. In particular, for987

monotonic mixtures we restrict the spline coefficients to be non-negative.988

Learning and hyperparameters. Since the data is bivariate, the tree on which PCs are defined989

on consists of just one region that is split in half. All models are learned by batched stochastic990

gradient descent using the Adam optimizer with default learning rate (Kingma & Ba, 2015) and a991

batch size of 256. The parameters of all mixtures are initialized by sampling uniformly between 0992

and 1. Furthermore, monotonicity in (squared) PCs is ensured by exponentiating the parameters.993

Fig. 3 shows the density functions estimated from data sets rings and cosine, when using 8 and 12994

components, respectively. Moreover, Fig. H.1 report the log-likelihoods and other density functions995

learned from data sets funnel and banana, when using 4 components.996

H.2 DISCRETE SYNTHETIC DATA997

For our experiments investigating the flexibility of input layers of NPC2s (Sec. 2) in case of discrete998

data (Sec. 5), we quantize the bivariate continuous synthetic data sets reported in App. H.1. That is,999

we discretize both continuous variables using 32 uniform bins each. The resulting target distribution1000

is therefore a probability mass function over two finitely discrete variables.1001

We experiment with monotonic PCs, their squaring and NPC2s with two families of input layers.1002

First, we investigate very flexible input layers for finitely discrete data: categoricals for monotonic1003

PCs and embeddings for NPC2s. Second, we experiment with the less flexible but more parameter-1004

efficient Binomials. The learning and hyperparameters setting are the same used for the continuous1005

data (see App. H.1). Fig. H.2 shows that there is little advantage in subtracting probability mass1006

with respect to monotonic PCs having categorical components. However, in case of the less flex-1007

ible Binomial components, NPC2s capture the target distribution significantly better. This is also1008

confirmed by the log-likelihoods on unseen data, which we show in Fig. H.2.1009

29

Published as a conference paper at ICLR 2024

C
A

T
E

G
O

R
IC

A
L

B
IN

O
M

IA
L

C
A

T
E

G
O

R
IC

A
L

B
IN

O
M

IA
L

GT

C
A

T
E

G
O

R
IC

A
L

MPC MPC2 NPC2

B
IN

O
M

IA
L

MPC MPC2 NPC2

5 10

−6.3

−6.2

−6.1

A
ve

ra
ge

L
L

K =

Rings

5 10

−5.75

−5.50

Cosine

5 10

−5.275

−5.250

−5.225

Funnel

5 10

−4.975

−4.950

Banana

MPC
MPC2

NPC2

(a) Mixtures with categorical or embedding components.

50 100

−6.50

−6.25

A
ve

ra
ge

L
L

K =

Rings

50 100

−6.00

−5.75

Cosine

50 100

−5.4

−5.3

Funnel

50 100

−5.05

−5.00

−4.95

Banana

MPC
MPC2

NPC2

(b) Mixtures with Binomial components.

Figure H.2: Negative parameters increases the expressiveness of NPC2s. From left to right
(above) and for each bivariate distribution, we show the ground truth (GT) and its estimation by a
monotonic PC (MPC), a squared monotonic PC (MPC2), and a NPC2 having input layers comput-
ing categoricals (embeddings for NPC2s) and with the same number of parameters. Moreover, we
show the average log-likelihoods (and one standard deviation with 10 independent runs) on unseen
data achieved by a monotonic MPC, a squared monotonic MPC2, and a NPC2 with either categori-
cal (a) or Binomial (b) components and by increasing the dimensionality of input layers K.

H.3 UCI CONTINUOUS DATA1010

Data sets. In Sec. 5 we evaluate NPC2s for density estimation on five multivariate UCI data sets1011

(Dua & Graff, 2017): Power (Hebrail & Berard, 2012), Gas (Fonollosa et al., 2015), Hepmass (Baldi1012

et al., 2016), MiniBooNE (Roe et al., 2004) and BSDS300 patches (Martin et al., 2001) by following1013

the pre-processing by Papamakarios et al. (2017). Table H.1 reports their statistics.1014

Number of samples

D train validation test

Power 6 1,659,917 184,435 204,928
Gas 8 852,174 94,685 105,206

Hepmass 21 315,123 35,013 174,987
MiniBooNE 43 29,556 3,284 3,648

BSDS300 63 1,000,000 50,000 250,000

Table H.1: UCI data set statistics. Di-
mensionality D and number of samples
of each data set split after the prepro-
cessing by Papamakarios et al. (2017).

Models. We compare monotonic PCs and NPC2s in tensorized form (Def. 1) for density estimation.1015

The tensorized architecture for both is constructed based on either the binary tree (BT) or linear1016

30

Published as a conference paper at ICLR 2024

tree (LT) RGs (see App. F). In addition, since both RGs are randomly-constructed, we instantiate1017

eight of them by changing the random seed. By doing so, our monotonic PCs consist of a mixture1018

of tensorized monotonic PCs each defined on a different RG. Conversely, our NPC2s consist of a1019

mixture (with non-negative parameters) of tensorized NPC2s, each constructed by squaring a circuit1020

defined on a different RG. To ensure a fair comparison, monotonic PCs and NPC2s have the exact1021

same structure, but NPC2s allow for negative parameters via the squaring mechanism (see Sec. 3).1022

Hyperparameters. We search for hyperparameters by running a grid search with both monotonic1023

PCs and NPC2s. For each UCI data set, Tables H.2 and H.3 report the possible value of each1024

hyperparameter, depending on the chosen RG. In case of input layers modeling spline functions (see1025

App. E), we use quadratic splines and select 512 uniformly in the domain space.1026

Parameters initialization. We found NPC2s to be more sensible to the choice of the initialization1027

method for parameters than monotonic PCs. The effect of initialization in monotonic PCs is not well1028

explored in the literature, and it is even more unclear for NPC2s as parameters are allowed to be1029

negative. In these experiments, we investigated initializing NPC2s by independently sampling the1030

parameters from a normal distribution. However, we found NPC2s to achieve higher log-likelihoods1031

if they are initialized with non-negative parameters only, i.e., by sampling uniformly between 0 and1032

1. Note that our work is a first attempt to learn non-monotonic PCs at scale, thus it opens interesting1033

future directions on how to initialize and learn NPC2s.1034

Table H.2: Hyperparameter grid search space for each UCI data set (for BT experiments).
Each data set is associated to lists of hyperparameters: learning rate, the dimensionality of layers
in tensorized PCs (K), batch size, and whether input layers compute Gaussian likelihoods or spline
functions (see App. E).

Data set Learning rate K Batch size Input layer

Power

[0.01, 0.005]

[32, . . . , 512] [512, 1024, 2048]

[Gaussian, splines]
Gas [32, . . . , 1024] [512, 1024, 2048, 4096]

Hepmass [32, . . . , 512] [512, 1024, 2048]
MiniBooNE [32, . . . , 512] [512, 1024, 2048]

BSDS300 [32, . . . , 256] [512, 1024, 2048]

Table H.3: Hyperparameter grid search space for each UCI data set (for LT experiments).
Each data set is associated to lists of hyperparameters: learning rate, the dimensionality of layers
in tensorized PCs (K), batch size, and whether input layers compute Gaussian likelihoods or spline
functions (see App. E).

Data set Learning rate K Batch size Input layer

Power

[0.005, 0.001] [32, . . . , 512] [512, 1024, 2048] [Gaussian, splines]
Gas

Hepmass
MiniBooNE

BSDS300

0.25 0.50

+2

±2

Power

0 10

+2

±2

Gas

−22.5−20.0

+2

±2

Hepmass

−35−30−25

+2

±2

MiniBooNE

110 120 130

+2

±2

BSDS300
KG S

1024
512
256
128
64
32

Figure H.3: Negative parameters make squared non-monotonic PCs more expressive than
squared monotonic PCs. NPC2s (±2, vertical) generally achieve higher log-likelihoods than
squared monotonic PCs (+2, horizontal) when paired with the same number of units per layer K. as
shown by the presence of more points in the upper triangle than in the lower triangle for most data
sets. Blue circles and red diamonds refer to runs with Gaussian (G) and spline (S) input layers
respectively, and darker hues indicate larger K. The dashed grey line represents the points of equal
log-likelihood for both the NPC2 and the squared monotonic PC.

31

Published as a conference paper at ICLR 2024

Table H.4: Squared non-monotonic PCs can be more expressive than monotonic PCs. Best
average test log-likelihoods and two standard errors achieved by monotonic PCs (MPC) and NPC2s
built either from randomized linear tree RGs (LT) or from randomized binary tree RGs (BT) (see
App. H.3), when compared to baselines. MPC, MPC2 and NPC2 were experimented with both
Gaussian (G) and spline (S) node input layers. † means no values were originally provided.

Power Gas Hepmass MiniBooNE BSDS300

MADE -3.08 ±0.03 3.56 ±0.04 -20.98 ±0.02 -15.59 ±0.50 148.85 ±0.28
RealNVP 0.17 ±0.01 8.33 ±0.14 -18.71 ±0.02 -13.84 ±0.52 153.28 ±1.78
MAF 0.24 ±0.01 10.08 ±0.02 -17.73 ±0.02 -12.24 ±0.45 154.93 ±0.28
NSF 0.66 ±0.01 13.09 ±0.02 -14.01 ±0.03 -9.22 ±0.48 157.31 ±0.28

Gaussian -7.74 ±0.02 -3.58 ±0.75 -27.93 ±0.02 -37.24 ±1.07 96.67 ±0.25
EiNet-LRS 0.36 ±† 4.79 ±† -22.46 ±† -34.21 ±† †
TTDE 0.46 ±† 8.93 ±† -21.34 ±† -28.77 ±† 143.30 ±†

G S G S G S G S G S

MPC (LT) 0.51 ±.01 0.24 ±.01 6.73 ±.03 -2.05 ±.02 -22.07 ±.02 -23.09 ±.02 -32.48 ±.44 -37.53 ±.46 123.15 ±.28 116.90 ±.28
MPC2 (LT) 0.49 ±.01 0.39 ±.01 7.06 ±.03 0.95 ±.01 -21.42 ±.02 -22.24 ±.02 -29.46 ±.44 -32.81 ±.47 — —
NPC2 (LT) 0.53 ±.01 0.43 ±.01 9.00 ±.02 3.03 ±.02 -20.66 ±.02 -21.53 ±.02 -26.68 ±.42 -29.36 ±.42 112.99 ±.29 120.11 ±.29
MPC (BT) 0.57 ±.01 0.32 ±.01 5.56 ±.03 -2.55 ±.02 -22.45 ±.02 -24.09 ±.02 -32.11 ±.43 -37.56 ±.46 121.92 ±.29 123.30 ±.29
MPC2 (BT) 0.57 ±.01 0.36 ±.01 8.24 ±.03 0.32 ±.02 -21.47 ±.02 -23.38 ±.02 -29.46 ±.43 -33.43 ±.47 125.56 ±.29 126.85 ±.29
NPC2 (BT) 0.63 ±.01 0.45 ±.01 10.98 ±.02 3.12 ±.01 -20.41 ±.02 -22.25 ±.02 -26.92 ±.44 -30.81 ±.54 114.47 ±.28 128.38 ±.29

Table H.5: Table showing average test set log-likelihoods and one standard deviation achieved from
running experiments 5 times with random parameters initialization, using the same hyperparameters
that were used for achieving results showed in Table H.4.

Power Gas Hepmass MiniBooNE BSDS300

MPC (LT) 0.46 ±0.03 7.03 ±0.18 -22.07 ±0.02 -31.79 ±0.39 126.66 ±5.46
MPC (BT) 0.53 ±0.03 6.16 ±0.56 -22.42 ±0.45 -33.30 ±0.98 122.77 ±0.71
NPC2 (LT) 0.42 ±0.11 8.97 ±0.08 -20.67 ±0.05 -29.58 ±0.29 127.58 ±4.66
NPC2 (BT) 0.62 ±0.01 10.55 ±0.39 -20.48 ±0.11 -27.64 ±0.44 128.45 ±0.52

Table H.6: Table listing the hyperparameters combinations found via a grid search, which were used
for achieving results showed in Table H.4. For input layers, G and S respectively denote Gaussian
and spline.

Model Data set K Batch size Learning rate Input layer

MPC (BT)

Power 512 512 0.01 G
Gas 1024 4096 0.01 G

Hepmass 128 512 0.01 G
MiniBooNE 32 512 0.01 G

BSDS300 512 512 0.01 S

MPC (LT)

Power 512 512 0.001 G
Gas 512 1024 0.001 G

Hepmass 512 512 0.005 G
MiniBooNE 512 1024 0.005 G

BSDS300 64 512 0.005 S

NPC2 (BT)

Power 512 512 0.01 G
Gas 1024 512 0.01 G

Hepmass 256 512 0.01 G
MiniBooNE 32 512 0.01 G

BSDS300 128 512 0.01 S

NPC2 (LT)

Power 512 512 0.001 G
Gas 512 512 0.001 G

Hepmass 256 512 0.001 G
MiniBooNE 128 2048 0.005 G

BSDS300 32 1024 0.001 S

32

Published as a conference paper at ICLR 2024

H.4 LARGE LANGUAGE MODEL DISTILLATION1035

Data set. Given p∗(x) the distribution modeled by GPT2 over sentences x = [x1, . . . , xD] having1036

maximum length D, we aim to minimize the Kullback-Leibler divergence KL[p∗ | p], where p is1037

modeled by a PC. Minimizing such divergence is equivalent to learn the PC by maximum-likelihood1038

on data sampled by GPT2. Therefore, following the experimental setting by Zhang et al. (2023)1039

we sample a data set of 4M sentences using GPT2 having bounded length D = 32, i.e., with a1040

maximum of D = 32 tokens. However, differently from Zhang et al. (2023), we used half the1041

number of sentences (i.e., 4M instead of 8M) due to training time limitations. A larger number of1042

sampled sentences can be useful to reduce the overfitting we observed with NPC2s (see Fig. 5).1043

Models. Then, we learn a monotonic PC and a NPC2 as tensorized circuits whose architecture is1044

determined by a linear tree RG (Def. 2), i.e., a region graph that recursively partitions each set of1045

finitely-discrete variables {Xi, . . . , XD} into {Xi} and {Xi+1, . . . , XD} for 1 ≤ i ≤ D − 1 (e.g.,1046

see Fig. 2a). This is because we are interested in exploiting the sequential dependencies between1047

words in a sentence. By enforcing monotonicity, we recover that the monotonic PC is equivalent to1048

an inhomogenous hidden Markov model (HMM), and that that NPC2 corresponds to a Born machine1049

(see App. B.4.1 for details).1050

Hyperparameters. All PCs are learned by batched stochastic gradient descent using (Kingma &1051

Ba, 2015) as optimizer using batch size 4096. We perform multiple runs by exploring combinations1052

of learning rates and initialization. For monotonic PCs, we run experiments by choosing learning1053

rates in {5 · 10−3, 10−2, 5 · 10−2} and initializing parameters by sampling uniformly in (0, 1), by1054

sampling from a standard log-normal distribution, and from a Dirichlet distribution with concentra-1055

tion values set to 1. Similarly for NPC2s, we run experiments by choosing the same learning rates1056

for monotonic PCs, but using different initialization. In addition to sampling uniformly in (0, 1),1057

we also initialize the parameters by sampling from a standard normal distribution. By doing so, we1058

initialize an approximately even number of positive and negative parameters. Moreover, we also1059

initialize parameters by sampling from a normal distribution with mean 1 and standard deviation 1,1060

which initializes more parameters to be positive.1061

33

	Introduction
	Subtractive Mixtures via Squaring
	Squaring Deep Mixture Models
	Building Tractable Circuits for Marginalization
	Squaring Deep Tensorized Circuits
	Numerically Stable Inference and Learning

	Expressiveness of NPC2s and Relationship to Other Models
	Exponential separation of NPC2s and Structured Monotonic PCs

	Experiments
	Discussion & Conclusion
	Circuits
	Tensorized Circuits
	Size of Tensorized Circuits

	Tractable Exact Sampling

	Proofs
	Squaring Tensorized Circuits
	Tractable Marginalization of NPC2s
	Representing PSD models within the language of NPC2s
	Relationship with Tensor Networks
	Relationship with Hidden Markov Models

	Exponential Separation
	Squaring Deterministic Circuits

	Efficient learning of NPC2s
	The Signed Log-Sum-Exp Trick
	Splines as Expressive Input Components
	Tree Region Graphs
	Additional Related Works
	Experimental Settings and Complementary Results
	Continuous Synthetic Data
	Discrete Synthetic Data
	UCI Continuous Data
	Large Language Model Distillation

